Suppr超能文献

基于神经网络的测定整合,以评估致病潜能。

Neural network based integration of assays to assess pathogenic potential.

机构信息

Netrias, LLC, 1162 Gateway Drive, Annapolis, MD, 21409, USA.

Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.

出版信息

Sci Rep. 2023 Apr 13;13(1):6021. doi: 10.1038/s41598-023-32950-5.

Abstract

Limited data significantly hinders our capability of biothreat assessment of novel bacterial strains. Integration of data from additional sources that can provide context about the strain can address this challenge. Datasets from different sources, however, are generated with a specific objective and which makes integration challenging. Here, we developed a deep learning-based approach called the neural network embedding model (NNEM) that integrates data from conventional assays designed to classify species with new assays that interrogate hallmarks of pathogenicity for biothreat assessment. We used a dataset of metabolic characteristics from a de-identified set of known bacterial strains that the Special Bacteriology Reference Laboratory (SBRL) of the Centers for Disease Control and Prevention (CDC) has curated for use in species identification. The NNEM transformed results from SBRL assays into vectors to supplement unrelated pathogenicity assays from de-identified microbes. The enrichment resulted in a significant improvement in accuracy of 9% for biothreat. Importantly, the dataset used in our analysis is large, but noisy. Therefore, the performance of our system is expected to improve as additional types of pathogenicity assays are developed and deployed. The proposed NNEM strategy thus provides a generalizable framework for enrichment of datasets with previously collected assays indicative of species.

摘要

有限的数据极大地限制了我们对新型细菌菌株进行生物威胁评估的能力。整合来自其他可以提供菌株背景信息的数据源可以解决这一挑战。然而,来自不同来源的数据集是为了特定的目标而生成的,这使得整合变得具有挑战性。在这里,我们开发了一种基于深度学习的方法,称为神经网络嵌入模型(NNEM),它整合了用于分类物种的常规检测数据,以及用于生物威胁评估的致病性特征检测的新检测数据。我们使用了一个来自美国疾病控制与预防中心(CDC)的特殊细菌参考实验室(SBRL)的已识别细菌菌株的代谢特征数据集,该数据集用于物种鉴定。NNEM 将 SBRL 检测的结果转化为向量,以补充来自无关联的已识别微生物的致病性检测。这种富集显著提高了生物威胁的准确性,提高了 9%。重要的是,我们分析中使用的数据集虽然很大,但噪音也很大。因此,随着更多类型的致病性检测的开发和部署,我们系统的性能预计将得到提高。因此,所提出的 NNEM 策略为使用先前收集的表明物种的检测数据来丰富数据集提供了一个可推广的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/884a/10102301/810e3822605a/41598_2023_32950_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验