Suppr超能文献

基于表面心电图预测动脉粥样硬化性心血管疾病中的冠状动脉钙化积分:一项初步研究。

Prediction of coronary artery calcium scoring from surface electrocardiogram in atherosclerotic cardiovascular disease: a pilot study.

作者信息

Farjo Peter D, Yanamala Naveena, Kagiyama Nobuyuki, Patel Heenaben B, Casaclang-Verzosa Grace, Nezarat Negin, Budoff Matthew J, Sengupta Partho P

机构信息

Division of Cardiology, Department of Medicine, West Virginia University Heart and Vascular Institute, 1 Medical Center Drive, Morgantown, WV 26506, USA.

Institute for Software Research, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.

出版信息

Eur Heart J Digit Health. 2020 Nov 23;1(1):51-61. doi: 10.1093/ehjdh/ztaa008. eCollection 2020 Nov.

Abstract

AIMS

Coronary artery calcium (CAC) scoring is an established tool for cardiovascular risk stratification. However, the lack of widespread availability and concerns about radiation exposure have limited the universal clinical utilization of CAC. In this study, we sought to explore whether machine learning (ML) approaches can aid cardiovascular risk stratification by predicting guideline recommended CAC score categories from clinical features and surface electrocardiograms.

METHODS AND RESULTS

In this substudy of a prospective, multicentre trial, a total of 534 subjects referred for CAC scores and electrocardiographic data were split into 80% training and 20% testing sets. Two binary outcome ML logistic regression models were developed for prediction of CAC scores equal to 0 and ≥400. Both CAC = 0 and CAC ≥400 models yielded values for the area under the curve, sensitivity, specificity, and accuracy of 84%, 92%, 70%, and 75%, and 87%, 91%, 75%, and 81%, respectively. We further tested the CAC ≥400 model to risk stratify a cohort of 87 subjects referred for invasive coronary angiography. Using an intermediate or higher pretest probability (≥15%) to predict CAC ≥400, the model predicted the presence of significant coronary artery stenosis ( = 0.025), the need for revascularization ( < 0.001), notably bypass surgery ( = 0.021), and major adverse cardiovascular events ( = 0.023) during a median follow-up period of 2 years.

CONCLUSION

ML techniques can extract information from electrocardiographic data and clinical variables to predict CAC score categories and similarly risk-stratify patients with suspected coronary artery disease.

摘要

目的

冠状动脉钙化(CAC)评分是一种既定的心血管风险分层工具。然而,其缺乏广泛可及性以及对辐射暴露的担忧限制了CAC在临床中的普遍应用。在本研究中,我们试图探讨机器学习(ML)方法能否通过从临床特征和体表心电图预测指南推荐的CAC评分类别来辅助心血管风险分层。

方法与结果

在这项前瞻性多中心试验的子研究中,共有534名接受CAC评分和心电图数据检测的受试者被分为80%的训练集和20%的测试集。开发了两个二元结局ML逻辑回归模型,用于预测CAC评分等于0和≥400的情况。CAC = 0和CAC≥400模型的曲线下面积、敏感性、特异性和准确性值分别为84%、92%、70%和75%,以及87%、91%、75%和81%。我们进一步对87名接受有创冠状动脉造影的受试者队列进行了CAC≥400模型的风险分层测试。使用中等或更高的预测试概率(≥15%)来预测CAC≥400,该模型预测了在中位随访期2年期间显著冠状动脉狭窄的存在(P = 0.025)、血运重建的必要性(P < 0.001),尤其是搭桥手术(P = 0.021)和主要不良心血管事件(P = 0.023)。

结论

ML技术可以从心电图数据和临床变量中提取信息,以预测CAC评分类别,并同样对疑似冠状动脉疾病的患者进行风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37b8/10087019/f52e94f694e0/ztaa008f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验