Santiago João, Kreutzer Joose, Bossink Elsbeth, Kallio Pasi, le Feber Joost
Clinical Neurophysiology, University of Twente, Enschede, Netherlands.
Micro and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
Front Neurosci. 2023 Mar 28;17:1110083. doi: 10.3389/fnins.2023.1110083. eCollection 2023.
In the core of a brain infarct, perfusion is severely impeded, and neuronal death occurs within minutes. In the penumbra, an area near the core with more remaining perfusion, cells initially remain viable, but activity is significantly reduced. In principle, the penumbra can be saved if reperfusion is established on time, making it a promising target for treatment. models with cultured neurons on microelectrode arrays (MEAs) provide a useful tool to investigate how ischemic stroke affects neuronal functioning. These models tend to be uniform, focusing on the isolated penumbra, and typically lack adjacent regions such as a core and unaffected regions (normal perfusion). However, processes in these regions may affect neuronal functioning and survival in the penumbra.
Here, we designed, fabricated, and characterized a cytocompatible device that generates an oxygen gradient across neuronal cultures to expose cells to hypoxia of various depths from near anoxia to near normoxia. This marks a step in the path to mimic core, penumbra, and healthy tissue, and will facilitate better modeling of ischemic stroke.
The generator forms a stable and reproducible gradient within 30 min. Oxygen concentrations at the extremes are adjustable in a physiologically relevant range. Application of the generator did not negatively affect electrophysiological recordings or the viability of cultures, thus confirming the cytocompatibility of the device.
The developed device is able to impose an oxygen gradient on neuronal cultures and may enrich stroke models.
在脑梗死核心区域,灌注严重受阻,神经元在数分钟内死亡。在半暗带,即核心区域附近灌注相对较多的区域,细胞最初仍可存活,但活性显著降低。原则上,如果能及时实现再灌注,半暗带是可以挽救的,这使其成为一个有前景的治疗靶点。基于微电极阵列(MEA)培养神经元的模型为研究缺血性中风如何影响神经元功能提供了有用工具。这些模型往往较为单一,聚焦于孤立的半暗带,通常缺少诸如核心区域和未受影响区域(正常灌注)等相邻区域。然而,这些区域的过程可能会影响半暗带中神经元的功能和存活。
在此,我们设计、制造并表征了一种细胞相容性装置,该装置能在神经元培养物中产生氧梯度,使细胞暴露于从接近无氧到接近正常氧水平的不同深度缺氧环境中。这标志着迈向模拟核心、半暗带和健康组织的道路上的一步,将有助于更好地建立缺血性中风模型。
该发生器在30分钟内形成稳定且可重复的梯度。极端情况下的氧浓度可在生理相关范围内调节。该发生器的应用对电生理记录或培养物的活力没有负面影响,从而证实了该装置的细胞相容性。
所开发的装置能够在神经元培养物上施加氧梯度,可能会丰富中风模型。