Suppr超能文献

基于非增强 CT 的放射组学模型检测棕色脂肪组织的建立与验证。

Development and validation of a nonenhanced CT based radiomics model to detect brown adipose tissue.

机构信息

Department of Nuclear Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.

Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.

出版信息

Theranostics. 2023 Mar 5;13(5):1584-1593. doi: 10.7150/thno.81789. eCollection 2023.

Abstract

It has been reported that brown adipose tissue (BAT) has a protective effect regarding cardiovascular disease. Positron emission tomography-computed tomography (PET-CT) is the reference method for detecting active BAT; however, it is not feasible to screen for BAT due to the required radionuclides and high-cost. The purpose of this study is to develop and validate a nonenhanced CT based radiomics model to detect BAT and to explore the relationship between CT radiomics derived BAT and cardiovascular calcification. 146 patients undergoing F-FDG PET-CT were retrospectively included from two centers for model development (n = 86) and external validation (n = 60). The data for the model development were randomly divided into a training cohort and an internal validation cohort with a 7:3 ratio, while the external validation data were divided 1:1 into a propensity score matching (PSM) cohort and a randomly sex matched cohort. Radiomics features of BAT and non-BAT depots were extracted from regions of interest (ROI) on nonenhanced CT corresponding to PET studies. Inter-class correlation coefficient (ICC) and Pearson's correlation analysis were performed to select radiomics features with high consistency. Next, least absolute shrinkage and selection operator (LASSO) with linear regression model was used to select radiomics features for model construction. Support vector machine (SVM) was used to develop the model and a radiomics score (RS) was calculated for each depot. The diagnostic performance of the radiomics model was evaluated both on a per-depot and per-patient basis by calculating the area under the receiver operating characteristic curve (AUROC). We further divided patients into BAT-RS group and non-BAT-RS group based on radiomics score and compared their cardiovascular calcification by calculating calcium volume and score. A total of 22 radiomics features were selected for model construction. On a per-depot basis, the AUROCs were 0.87 (95% CI: 0.83-0.9), 0.85 (95% CI: 0.79-0.90), 0.72 (95% CI: 0.67-0.77) and 0.74 (95% CI: 0.69-0.79) for detecting BAT in the training, internal validation, external validation 1 and external validation 2 cohorts, respectively. On a per-patient basis, the radiomics model had high AUROCs of 0.91 (95% CI: 0.84-0.98), 0.77 (95% CI: 0.61-0.92) and 0.85 (95% CI: 0.72-0.98) in the training, external validation 1 and external validation 2 cohorts, respectively. When grouping based on the radiomics model, the BAT-RS group had lower odds of coronary artery calcium (CAC) and thoracic aorta calcium (TAC) compared with the non-BAT-RS group (CAC: 2.8% 20.3%, p = 0.001; TAC: 19.4% 39.2%, p = 0.009). The BAT-RS group had less CAC volume (4.1 ± 4.0 mm 147.4 ± 274.3 mm; p = 0.001), CAC score (2.8 ± 3.0 169.1 ± 311.5; p = 0.001), TAC volume (301.4 ± 450.2 mm 635.3 ± 1100.7 mm; p = 0.007) and TAC score (496.2 ± 132.6 749.2 ± 1297.3; p = 0.007) than the non-BAT-RS group. We developed and validated a nonenhanced CT based reliable radiomics model for detecting BAT with PET-CT findings as reference standard. Radiomics signatures from nonenhanced CT can reliably detect BAT and have promising potential to be used in routine clinical settings. Importantly, our study showed that patients with BAT had less cardiovascular calcification.

摘要

据报道,棕色脂肪组织(BAT)对心血管疾病具有保护作用。正电子发射断层扫描-计算机断层扫描(PET-CT)是检测活性 BAT 的参考方法;然而,由于需要放射性核素和高成本,因此无法进行 BAT 筛查。本研究旨在开发和验证一种基于非增强 CT 的放射组学模型来检测 BAT,并探讨 CT 放射组学衍生的 BAT 与心血管钙化之间的关系。

回顾性纳入了来自两个中心的 146 名接受 F-FDG PET-CT 的患者,用于模型开发(n=86)和外部验证(n=60)。模型开发的数据随机分为训练队列和内部验证队列,比例为 7:3,而外部验证数据则分为 1:1 的倾向评分匹配(PSM)队列和随机性别匹配队列。从与 PET 研究相对应的非增强 CT 上的感兴趣区域(ROI)中提取 BAT 和非 BAT 脂肪组织的放射组学特征。采用组内相关系数(ICC)和 Pearson 相关分析来选择具有高一致性的放射组学特征。接下来,采用最小绝对值收缩和选择算子(LASSO)与线性回归模型选择模型构建的放射组学特征。支持向量机(SVM)用于开发模型,并为每个 depot 计算放射组学评分(RS)。通过计算接收者操作特征曲线(AUROC)下的面积,评估放射组学模型在 depot 水平和患者水平的诊断性能。我们还根据放射组学评分将患者分为 BAT-RS 组和非 BAT-RS 组,并通过计算钙体积和评分来比较他们的心血管钙化情况。

共选择了 22 个放射组学特征用于模型构建。在 depot 水平上,训练、内部验证、外部验证 1 和外部验证 2 队列中检测 BAT 的 AUROCs 分别为 0.87(95%CI:0.83-0.9)、0.85(95%CI:0.79-0.90)、0.72(95%CI:0.67-0.77)和 0.74(95%CI:0.69-0.79)。在患者水平上,放射组学模型在训练、外部验证 1 和外部验证 2 队列中的 AUROCs 分别为 0.91(95%CI:0.84-0.98)、0.77(95%CI:0.61-0.92)和 0.85(95%CI:0.72-0.98)。当根据放射组学模型进行分组时,BAT-RS 组与非 BAT-RS 组相比,冠状动脉钙(CAC)和胸主动脉钙(TAC)的可能性较低(CAC:2.8%比 20.3%,p=0.001;TAC:19.4%比 39.2%,p=0.009)。BAT-RS 组的 CAC 体积(4.1±4.0 mm 比 147.4±274.3 mm,p=0.001)、CAC 评分(2.8±3.0 比 169.1±311.5,p=0.001)、TAC 体积(301.4±450.2 mm 比 635.3±1100.7 mm,p=0.007)和 TAC 评分(496.2±132.6 比 749.2±1297.3,p=0.007)均低于非 BAT-RS 组。

我们开发并验证了一种基于非增强 CT 的可靠放射组学模型,该模型可用于检测以 PET-CT 为参考标准的 BAT。来自非增强 CT 的放射组学特征可以可靠地检测 BAT,并具有在常规临床环境中使用的巨大潜力。重要的是,我们的研究表明,具有 BAT 的患者心血管钙化程度较低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d71/10086200/d982a53bae4c/thnov13p1584g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验