Suppr超能文献

低强度力促使神经前体细胞向神经元成熟分化。

Low Forces Push the Maturation of Neural Precursors into Neurons.

机构信息

Department of Biology, Università di Pisa, Pisa, 56127, Italy.

Center for Materials Interfaces, Istituto Italiano di Tecnologia, Pontedera, 56025, Italy.

出版信息

Small. 2023 Jul;19(30):e2205871. doi: 10.1002/smll.202205871. Epub 2023 Apr 14.

Abstract

Mechanical stimulation modulates neural development and neuronal activity. In a previous study, magnetic "nano-pulling" is proposed as a tool to generate active forces. By loading neural cells with magnetic nanoparticles (MNPs), a precise force vector is remotely generated through static magnetic fields. In the present study, human neural stem cells (NSCs) are subjected to a standard differentiation protocol, in the presence or absence of nano-pulling. Under mechanical stimulation, an increase in the length of the neural processes which showed an enrichment in microtubules, endoplasmic reticulum, and mitochondria is found. A stimulation lasting up to 82 days induces a strong remodeling at the level of synapse density and a re-organization of the neuronal network, halving the time required for the maturation of neural precursors into neurons. The MNP-loaded NSCs are then transplanted into mouse spinal cord organotypic slices, demonstrating that nano-pulling stimulates the elongation of the NSC processes and modulates their orientation even in an ex vivo model. Thus, it is shown that active mechanical stimuli can guide the outgrowth of NSCs transplanted into the spinal cord tissue. The findings suggest that mechanical forces play an important role in neuronal maturation which could be applied in regenerative medicine.

摘要

机械刺激调节神经发育和神经元活动。在之前的研究中,提出了磁性“纳米牵拉”作为产生主动力的工具。通过将磁性纳米颗粒 (MNP) 加载到神经细胞中,可以通过静磁场远程产生精确的力矢量。在本研究中,人类神经干细胞 (NSC) 在存在或不存在纳米牵拉的情况下进行标准分化。在机械刺激下,发现神经突起的长度增加,微管、内质网和线粒体丰富。持续长达 82 天的刺激会导致突触密度的强烈重塑和神经元网络的重新组织,将神经前体细胞成熟为神经元所需的时间缩短一半。然后将负载 MNP 的 NSC 移植到小鼠脊髓器官切片中,证明纳米牵拉刺激 NSC 突起的伸长,并调节其在体外模型中的取向。因此,表明主动机械刺激可以引导移植到脊髓组织中的 NSC 的生长。研究结果表明,机械力在神经元成熟中起着重要作用,可应用于再生医学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验