Suppr超能文献

用于软骨组织工程的 3D 可生物打印缺氧模拟 PEG 基纳米生物墨水。

3D Bioprintable Hypoxia-Mimicking PEG-Based Nano Bioink for Cartilage Tissue Engineering.

机构信息

Regenerative Medicine and Stem cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India.

Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 26;15(16):19921-19936. doi: 10.1021/acsami.3c00389. Epub 2023 Apr 14.

Abstract

As hypoxia plays a significant role in the formation and maintenance of cartilage tissue, aiming to develop native hypoxia-mimicking tissue engineering scaffolds is an efficient method to treat articular cartilage (AC) defects. Cobalt (Co) is documented for its hypoxic-inducing effects by stabilizing the hypoxia-inducible factor-1α (HIF-1α), a chief regulator of stem cell fate. Considering this, we developed a novel three-dimensional (3D) bioprintable hypoxia-mimicking nano bioink wherein cobalt nanowires (Co NWs) were incorporated into the poly(ethylene glycol) diacrylate (PEGDA) hydrogel system as a hypoxia-inducing agent and encapsulated with umbilical cord-derived mesenchymal stem cells (UMSCs). In the current study, we investigated the impact of Co NWs on the chondrogenic differentiation of UMSCs in the PEGDA hydrogel system. Herein, the hypoxia-mimicking nano bioink (PEGDA+Co NW) was rheologically optimized to bioprint geometrically stable cartilaginous constructs. The bioprinted 3D constructs were evaluated for their physicochemical characterization, swelling-degradation behavior, mechanical properties, cell proliferation, and the expression of chondrogenic markers by histological, immunofluorescence, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) methods. The results disclosed that, compared to the control (PEGDA) group, the hypoxia-mimicking nano bioink (PEGDA+Co NW) group outperformed in print fidelity and mechanical properties. Furthermore, live/dead staining, double-stranded DNA (dsDNA) content, and glycosaminoglycans (GAGs) content demonstrated that adding low amounts of Co NWs (<20 ppm) into PEGDA hydrogel system supported UMSC adhesion, proliferation, and differentiation. Histological and immunofluorescence staining of the PEGDA+Co NW bioprinted structures revealed the production of type 2 collagen (COL2) and sulfated GAGs, rendering it a feasible option for cartilage repair. It was further corroborated by a significant upregulation of the hypoxia-mediated chondrogenic and downregulation of the hypertrophic/osteogenic marker expression. In conclusion, the hypoxia-mimicking hydrogel system, including PEGDA and Co ions, synergistically directs the UMSCs toward the chondrocyte lineage without using expensive growth factors and provides an alternative strategy for translational applications in the cartilage tissue engineering field.

摘要

由于缺氧在软骨组织的形成和维持中起着重要作用,因此开发具有天然缺氧模拟组织工程支架是治疗关节软骨 (AC) 缺损的有效方法。钴 (Co) 通过稳定缺氧诱导因子-1α (HIF-1α) 来诱导缺氧,HIF-1α 是干细胞命运的主要调节剂。有鉴于此,我们开发了一种新型的三维 (3D) 可生物打印的缺氧模拟纳米生物墨水,其中将钴纳米线 (Co NWs) 掺入聚乙二醇二丙烯酸酯 (PEGDA) 水凝胶系统中作为缺氧诱导剂,并封装脐带间充质干细胞 (UMSCs)。在本研究中,我们研究了 Co NWs 对 UMSC 在 PEGDA 水凝胶系统中软骨分化的影响。在这里,缺氧模拟纳米生物墨水 (PEGDA+Co NW) 在流变学上进行了优化,以生物打印出几何形状稳定的软骨构建体。通过组织学、免疫荧光和逆转录定量聚合酶链反应 (RT-qPCR) 方法评估生物打印的 3D 构建体的理化特性、溶胀降解行为、机械性能、细胞增殖和软骨形成标志物的表达。结果表明,与对照组 (PEGDA) 相比,缺氧模拟纳米生物墨水 (PEGDA+Co NW) 组在打印保真度和机械性能方面表现更好。此外,活/死染色、双链 DNA (dsDNA) 含量和糖胺聚糖 (GAGs) 含量表明,在 PEGDA 水凝胶系统中添加少量 Co NWs(<20 ppm) 支持 UMSC 黏附、增殖和分化。PEGDA+Co NW 生物打印结构的组织学和免疫荧光染色显示出 2 型胶原蛋白 (COL2) 和硫酸化 GAGs 的产生,使其成为软骨修复的可行选择。这进一步得到了缺氧介导的软骨形成标志物表达上调和肥大/成骨标志物表达下调的证实。总之,包括 PEGDA 和 Co 离子在内的缺氧模拟水凝胶系统协同指导 UMSC 向软骨细胞谱系分化,而无需使用昂贵的生长因子,并为软骨组织工程领域的转化应用提供了一种替代策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验