Wang Min, Wang Jiachen, Xu Xin, Li Erliang, Xu Peng
Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China.
Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China.
Mater Today Bio. 2024 Nov 19;29:101351. doi: 10.1016/j.mtbio.2024.101351. eCollection 2024 Dec.
Untreated articular cartilage injuries often result in severe chronic pain and dyskinesia. Current repair strategies have limitations in effectively promoting articular cartilage repair, underscoring the need for innovative therapeutic approaches. A gene-activated matrix (GAM) is a promising and comprehensive therapeutic strategy that integrates tissue-engineered scaffold-guided gene therapy to promote long-term articular cartilage repair by enhancing gene retention, reducing gene loss, and regulating gene release. However, for effective articular cartilage repair, the GAM scaffold must mimic the complex gradient structure of natural articular cartilage. Three-dimensional (3D) bioprinting technology has emerged as a compelling solution, offering the ability to precisely create complex microstructures that mimic the natural articular cartilage. In this review, we summarize the recent research progress on GAM and 3D bioprinted scaffolds in articular cartilage tissue engineering (CTE), while also exploring future challenges and development directions. This review aims to provide new ideas and concepts for the development of gene-activated bioprinted scaffolds with specific properties tailored to meet the stringent requirements of articular cartilage repair.
未经治疗的关节软骨损伤常导致严重的慢性疼痛和运动障碍。目前的修复策略在有效促进关节软骨修复方面存在局限性,这凸显了创新治疗方法的必要性。基因激活基质(GAM)是一种有前景的综合治疗策略,它整合了组织工程支架引导的基因治疗,通过增强基因保留、减少基因损失和调节基因释放来促进长期的关节软骨修复。然而,为了实现有效的关节软骨修复,GAM支架必须模仿天然关节软骨的复杂梯度结构。三维(3D)生物打印技术已成为一个引人注目的解决方案,它能够精确创建模仿天然关节软骨的复杂微观结构。在这篇综述中,我们总结了GAM和3D生物打印支架在关节软骨组织工程(CTE)方面的最新研究进展,同时也探讨了未来的挑战和发展方向。这篇综述旨在为开发具有特定性能的基因激活生物打印支架提供新的思路和概念,以满足关节软骨修复的严格要求。