Suppr超能文献

基于长程机器学习模型的水中介电饱和。

Dielectric Saturation in Water from a Long-Range Machine Learning Model.

机构信息

Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.

Department of Physics, Beijing University of Posts and Telecommunications, 100876 Beijing, China.

出版信息

J Phys Chem B. 2023 Apr 27;127(16):3663-3671. doi: 10.1021/acs.jpcb.3c00390. Epub 2023 Apr 14.

Abstract

Machine learning-based neural network potentials have the ability to provide ab initio-level predictions while reaching large length and time scales often limited to empirical force fields. Traditionally, neural network potentials rely on a local description of atomic environments to achieve this scalability. These local descriptions result in short-range models that neglect long-range interactions necessary for processes like dielectric screening in polar liquids. Several approaches to including long-range electrostatic interactions within neural network models have appeared recently, and here we investigate the transferability of one such model, the self-consistent field neural network (SCFNN), which focuses on learning the physics associated with long-range response. By learning the essential physics, one can expect that such a neural network model should exhibit at least partial transferability. We illustrate this transferability by modeling dielectric saturation in a SCFNN model of water. We show that the SCFNN model can predict nonlinear response at high electric fields, including saturation of the dielectric constant, without training the model on these high field strengths and the resulting liquid configurations. We then use these simulations to examine the nuclear and electronic structure changes underlying dielectric saturation. Our results suggest that neural network models can exhibit transferability beyond the linear response regime and make genuine predictions when the relevant physics is properly learned.

摘要

基于机器学习的神经网络势具有提供从头算水平预测的能力,同时可以达到经验力场通常受限的大长度和时间尺度。传统上,神经网络势依赖于原子环境的局部描述来实现这种可扩展性。这些局部描述导致了短程模型,忽略了在极性液体中的介电屏蔽等过程所需的长程相互作用。最近出现了几种在神经网络模型中包含长程静电相互作用的方法,在这里我们研究了其中一种模型,自洽场神经网络 (SCFNN) 的可转移性,该模型专注于学习与长程响应相关的物理。通过学习基本物理,人们可以期望这样的神经网络模型至少具有部分可转移性。我们通过对水的 SCFNN 模型中的介电饱和进行建模来说明这种可转移性。我们表明,SCFNN 模型可以预测包括介电常数饱和在内的高电场下的非线性响应,而无需在这些高场强和由此产生的液体构型上对模型进行训练。然后,我们使用这些模拟来研究介电饱和下的核和电子结构变化。我们的结果表明,神经网络模型在适当学习相关物理时可以表现出超越线性响应范围的可转移性并做出真正的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验