Liu Xiaohong, Xu Xingtao, Xuan Xiaoxu, Xia Wei, Feng Guilin, Zhang Shuaihua, Wu Zhen-Guo, Zhong Benhe, Guo Xiaodong, Xie Keyu, Yamauchi Yusuke
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China.
Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
J Am Chem Soc. 2023 Apr 26;145(16):9242-9253. doi: 10.1021/jacs.3c01755. Epub 2023 Apr 14.
The low salt adsorption capacities (SACs) of benchmark carbon materials (usually below 20 mg g) are one of the most challenging issues limiting further commercial development of capacitive deionization (CDI), an energetically favorable method for sustainable water desalination. Sodium superionic conductor (NASICON)-structured NaTi(PO) (NTP) materials, especially used in combination with carbon to prepare NTP/C materials, provide emerging options for higher CDI performance but face the problems of poor cycling stability and dissolution of active materials. In this study, we report the development of the yolk-shell nanoarchitecture of NASICON-structured NTP/C materials (denoted as -NTP@C) using a metal-organic framework@covalent organic polymer (MOF@COP) as a sacrificial template and space-confined nanoreactor. As expected, -NTP@C exhibits good CDI performance, including exemplary SACs with a maximum SAC of 124.72 mg g at 1.8 V in the constant-voltage mode and 202.76 mg g at 100 mA g in the constant-current mode, and good cycling stability without obvious performance degradation or energy consumption increase over 100 cycles. Furthermore, X-ray diffraction used to study CDI cycling clearly exhibits the good structural stability of -NTP@C during repeated ion intercalation/deintercalation processes, and the finite element simulation shows why yolk-shell nanostructures exhibit better performance than other materials. This study provides a new synthetic paradigm for preparing yolk-shell structured materials from MOF@COP and highlights the potential use of yolk-shell nanoarchitectures for electrochemical desalination.
基准碳材料的低盐吸附容量(SACs)较低(通常低于20 mg g),这是限制电容去离子化(CDI)进一步商业化发展的最具挑战性的问题之一,CDI是一种有利于可持续水脱盐的节能方法。钠超离子导体(NASICON)结构的NaTi(PO)(NTP)材料,特别是与碳结合使用以制备NTP/C材料时,为更高的CDI性能提供了新的选择,但面临循环稳定性差和活性材料溶解的问题。在本研究中,我们报道了使用金属有机框架@共价有机聚合物(MOF@COP)作为牺牲模板和空间受限纳米反应器来开发NASICON结构的NTP/C材料(表示为-NTP@C)的蛋黄壳纳米结构。正如预期的那样,-NTP@C表现出良好的CDI性能,包括在恒压模式下1.8 V时最大SAC为124.72 mg g以及在恒流模式下100 mA g时为202.76 mg g的示例性SAC,并且具有良好的循环稳定性,在100次循环中没有明显的性能下降或能耗增加。此外,用于研究CDI循环的X射线衍射清楚地表明了-NTP@C在重复离子嵌入/脱嵌过程中的良好结构稳定性,有限元模拟表明了蛋黄壳纳米结构为何比其他材料表现出更好的性能。本研究为从MOF@COP制备蛋黄壳结构材料提供了一种新的合成范例,并突出了蛋黄壳纳米结构在电化学脱盐中的潜在用途。