Suppr超能文献

通过界面包覆和空间封装设计增强中空介孔碳球/MOFs衍生纳米复合材料的电容去离子性能

Enhanced Capacitive Deionization of Hollow Mesoporous Carbon Spheres/MOFs Derived Nanocomposites by Interface-Coating and Space-Encapsulating Design.

作者信息

Tang Yijian, Shi Yuxin, Su Yichun, Cao Shuai, Hu Jinliang, Zhou Huijie, Sun Yangyang, Liu Zheng, Zhang Songtao, Xue Huaiguo, Pang Huan

机构信息

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.

Jiangsu Yangnong Chemical Group Co. Ltd., Yangzhou, 225009, P. R. China.

出版信息

Adv Sci (Weinh). 2024 Oct;11(39):e2403802. doi: 10.1002/advs.202403802. Epub 2024 Aug 14.

Abstract

Exploring new carbon-based electrode materials is quite necessary for enhancing capacitive deionization (CDI). Here, hollow mesoporous carbon spheres (HMCSs)/metal-organic frameworks (MOFs) derived carbon materials (NC(M)/HMCSs and NC(M)@HMCSs) are successfully prepared by interface-coating and space-encapsulating design, respectively. The obtained NC(M)/HMCSs and NC(M)@HMCSs possess a hierarchical hollow nanoarchitecture with abundant nitrogen doping, high specific surface area, and abundant meso-/microporous pores. These merits are conducive to rapid ion diffusion and charge transfer during the adsorption process. Compared to NC(M)/HMCSs, NC(M)@HMCSs exhibit superior electrochemical performance due to their better utilization of the internal space of hollow carbon, forming an interconnected 3D framework. In addition, the introduction of Ni ions is more conducive to the synergistic effect between ZIF(M)-derived carbon and N-doped carbon shell compared with other ions (Mn, Co, Cu ions). The resultant Ni-1-800-based CDI device exhibits excellent salt adsorption capacity (SAC, 37.82 mg g) and good recyclability. This will provide a new direction for the MOF nanoparticle-driven assembly strategy and the application of hierarchical hollow carbon nanoarchitecture to CDI.

摘要

探索新型碳基电极材料对于增强电容去离子化(CDI)十分必要。在此,通过界面包覆和空间封装设计,分别成功制备了中空介孔碳球(HMCSs)/金属有机框架(MOFs)衍生碳材料(NC(M)/HMCSs和NC(M)@HMCSs)。所制备的NC(M)/HMCSs和NC(M)@HMCSs具有分级中空纳米结构,具有丰富的氮掺杂、高比表面积以及丰富的介孔/微孔。这些优点有利于吸附过程中离子的快速扩散和电荷转移。与NC(M)/HMCSs相比,NC(M)@HMCSs由于对中空碳内部空间的更好利用,形成了相互连接的三维框架,因而表现出优异的电化学性能。此外,与其他离子(Mn、Co、Cu离子)相比,Ni离子的引入更有利于ZIF(M)衍生碳与氮掺杂碳壳之间的协同效应。所得基于Ni-1-800的CDI器件表现出优异的盐吸附容量(SAC,37.82 mg g)和良好的可循环性。这将为MOF纳米颗粒驱动的组装策略以及分级中空碳纳米结构在CDI中的应用提供新的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d764/11497006/67d8fcb0a033/ADVS-11-2403802-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验