Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093-0505, United States.
ACS Chem Neurosci. 2023 May 3;14(9):1575-1584. doi: 10.1021/acschemneuro.2c00649. Epub 2023 Apr 14.
Several lines of evidence suggest that a characteristic of the neuropathology of Alzheimer's disease (AD) is the aggregation of the amyloid beta peptides (Aβ), fragments of the human amyloid precursor protein (hAPP). The dominating species are the Aβ40 and Aβ42 fragments with 40 and 42 amino acids, respectively. Aβ initially forms soluble oligomers that continue to expand to protofibrils, suggestively the neurotoxic intermediates, and thereafter turn into insoluble fibrils that are markers of the disease. Using the powerful tool of pharmacophore simulation, we selected small molecules not known to possess central nervous system (CNS) activity but that might interact with Aβ aggregation, from the NCI Chemotherapeutic Agents Repository, Bethesda, MD. We assessed the activity of these compounds on Aβ aggregation using the thioflavin T fluorescence correlation spectroscopy (ThT-FCS) assay. Förster resonance energy transfer-based fluorescence correlation spectroscopy (FRET-FCS) was used to characterize the dose-dependent activity of selected compounds at an early stage of Aβ aggregation. Transmission electron microscopy (TEM) confirmed that the interfering substances block fibril formation and identified the macrostructures of Aβ aggregates formed in their presence. We first found three compounds generating protofibrils with branching and budding never observed in the control. One compound generated a two-dimensional sheet structure and another generated a double-stranded filament. Importantly, these compounds generating protofibrils with altered macrostructure protected against Aβ-induced toxicity in a cell model while showing no toxicity in a model of cognition in normal mice. The data suggest that the active compounds act as decoys turning the aggregation into nontoxic trajectories and pointing toward novel approaches to therapy.
有几条证据表明,阿尔茨海默病(AD)神经病理学的一个特征是淀粉样β肽(Aβ)的聚集,这些 Aβ 是人类淀粉样前体蛋白(hAPP)的片段。占主导地位的物质是具有 40 个和 42 个氨基酸的 Aβ40 和 Aβ42 片段。Aβ 最初形成可溶性寡聚物,然后继续扩展为原纤维,提示为神经毒性中间体,此后变成不溶性纤维,成为疾病的标志物。我们使用药理学模拟的强大工具,从马里兰州贝塞斯达的 NCI 化疗药物库中选择了一些不具有中枢神经系统(CNS)活性但可能与 Aβ 聚集相互作用的小分子。我们使用硫黄素 T 荧光相关光谱(ThT-FCS)测定法评估了这些化合物对 Aβ 聚集的活性。基于Förster 共振能量转移的荧光相关光谱(FRET-FCS)用于在 Aβ 聚集的早期阶段表征选定化合物的剂量依赖性活性。透射电子显微镜(TEM)证实,干扰物质阻止了纤维的形成,并确定了在其存在下形成的 Aβ 聚集体的宏观结构。我们首先发现三种化合物生成了具有分枝和出芽的原纤维,这在对照中从未观察到。一种化合物生成了二维片状结构,另一种化合物生成了双链丝状结构。重要的是,这些生成具有改变的宏观结构的原纤维的化合物可防止 Aβ 诱导的细胞模型中的毒性,而在正常小鼠的认知模型中没有显示出毒性。这些数据表明,活性化合物作为诱饵发挥作用,将聚集转化为无毒轨迹,并为治疗提供了新的方法。