Suppr超能文献

RB-TnSeq 鉴定出提高假单胞菌对木质素转化相关化合物耐受性的遗传靶点。

RB-TnSeq identifies genetic targets for improved tolerance of Pseudomonas putida towards compounds relevant to lignin conversion.

机构信息

Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

出版信息

Metab Eng. 2023 May;77:208-218. doi: 10.1016/j.ymben.2023.04.007. Epub 2023 Apr 13.

Abstract

Lignin-derived mixtures intended for bioconversion commonly contain high concentrations of aromatic acids, aliphatic acids, and salts. The inherent toxicity of these chemicals places a significant bottleneck upon the effective use of microbial systems for the valorization of these mixtures. Pseudomonas putida KT2440 can tolerate stressful quantities of several lignin-related compounds, making this bacterium a promising host for converting these chemicals to valuable bioproducts. Nonetheless, further increasing P. putida tolerance to chemicals in lignin-rich substrates has the potential to improve bioprocess performance. Accordingly, we employed random barcoded transposon insertion sequencing (RB-TnSeq) to reveal genetic determinants in P. putida KT2440 that influence stress outcomes during exposure to representative constituents found in lignin-rich process streams. The fitness information obtained from the RB-TnSeq experiments informed engineering of strains via deletion or constitutive expression of several genes. Namely, ΔgacAS, ΔfleQ, ΔlapAB, ΔttgR::P:ttgABC, P:PP_1150:PP_1152, ΔrelA, and ΔPP_1430 mutants showed growth improvement in the presence of single compounds, and some also exhibited greater tolerance when grown using a complex chemical mixture representative of a lignin-rich chemical stream. Overall, this work demonstrates the successful implementation of a genome-scale screening tool for the identification of genes influencing stress tolerance against notable compounds within lignin-enriched chemical streams, and the genetic targets identified herein offer promising engineering targets for improving feedstock tolerance in lignin valorization strains of P. putida KT2440.

摘要

木质素衍生混合物通常用于生物转化,其中含有高浓度的芳香酸、脂肪酸和盐。这些化学物质的固有毒性对微生物系统有效利用这些混合物的增值能力构成了重大瓶颈。恶臭假单胞菌 KT2440 可以耐受几种木质素相关化合物的应激数量,使该细菌成为将这些化学物质转化为有价值的生物制品的有前途的宿主。尽管如此,进一步提高富含木质素的基质中化学品对 P. putida 的耐受性有可能改善生物工艺性能。因此,我们采用随机条形码转座子插入测序(RB-TnSeq)来揭示影响富含木质素工艺流中代表性成分暴露时 P. putida KT2440 应激结果的遗传决定因素。从 RB-TnSeq 实验获得的适应性信息通过缺失或组成型表达几个基因来指导菌株的工程设计。即,ΔgacAS、ΔfleQ、ΔlapAB、ΔttgR::P:ttgABC、P:PP_1150:PP_1152、ΔrelA 和 ΔPP_1430 突变体在单一化合物存在下表现出生长改善,一些突变体在使用代表富含木质素的化学流的复杂化学混合物生长时也表现出更高的耐受性。总体而言,这项工作证明了成功实施了一种全基因组筛选工具,用于鉴定影响富含木质素的化学流中显著化合物的应激耐受性的基因,并且本文确定的遗传靶标为提高 P. putida KT2440 木质素增值菌株对原料的耐受性提供了有前途的工程目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验