Suppr超能文献

基于 MRI 的脊柱转移瘤起源鉴别:放射组学与深度学习方法的比较。

Identification of Origin for Spinal Metastases from MR Images: Comparison Between Radiomics and Deep Learning Methods.

机构信息

Department of Orthopaedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

出版信息

World Neurosurg. 2023 Jul;175:e823-e831. doi: 10.1016/j.wneu.2023.04.029. Epub 2023 Apr 13.

Abstract

OBJECTIVE

To determine whether spinal metastatic lesions originated from lung cancer or from other cancers based on spinal contrast-enhanced T1 (CET1) magnetic resonance (MR) images analyzed using radiomics (RAD) and deep learning (DL) methods.

METHODS

We recruited and retrospectively reviewed 173 patients diagnosed with spinal metastases at two different centers between July 2018 and June 2021. Of these, 68 involved lung cancer and 105 were other types of cancer. They were assigned to an internal cohort of 149 patients, randomly divided into a training set and a validation set, and to an external cohort of 24 patients. All patients underwent CET1-MR imaging before surgery or biopsy. We developed two predictive algorithms: a DL model and a RAD model. We compared performance between models, and against human radiological assessment, via accuracy (ACC) and receiver operating characteristic (ROC) analyses. Furthermore, we analyzed the correlation between RAD and DL features.

RESULTS

The DL model outperformed RAD model across the board, with ACC/ area under the receiver operating characteristic curve (AUC) values of 0.93/0.94 (DL) versus 0.84/0.93 (RAD) when applied to the training set from the internal cohort, 0.74/0.76 versus 0.72/0.75 when applied to the validation set, and 0.72/0.76 versus 0.69/0.72 when applied to the external test cohort. For the validation set, it also outperformed expert radiological assessment (ACC: 0.65, AUC: 0.68). We only found weak correlations between DL and RAD features.

CONCLUSION

The DL algorithm successfully identified the origin of spinal metastases from pre-operative CET1-MR images, outperforming both RAD models and expert assessment by trained radiologists.

摘要

目的

基于放射组学(RAD)和深度学习(DL)方法分析的脊柱对比增强 T1(CET1)磁共振(MR)图像,确定脊柱转移瘤病灶是来源于肺癌还是其他癌症。

方法

我们在 2018 年 7 月至 2021 年 6 月期间在两个不同的中心招募并回顾性分析了 173 名诊断为脊柱转移瘤的患者。其中 68 例为肺癌,105 例为其他类型的癌症。他们被分为一个内部队列的 149 名患者,随机分为训练集和验证集,以及一个外部队列的 24 名患者。所有患者均在手术或活检前进行 CET1-MR 成像。我们开发了两种预测算法:DL 模型和 RAD 模型。我们通过准确性(ACC)和接收者操作特征(ROC)分析,比较了模型之间的性能,以及与人类放射学评估的比较。此外,我们分析了 RAD 和 DL 特征之间的相关性。

结果

DL 模型在所有方面均优于 RAD 模型,在内部队列的训练集、验证集和外部测试队列中的应用中,ACC/ROC 曲线下面积(AUC)值分别为 0.93/0.94(DL)与 0.84/0.93(RAD)、0.74/0.76 与 0.72/0.75、0.72/0.76 与 0.69/0.72。对于验证集,它也优于专家放射学评估(ACC:0.65,AUC:0.68)。我们仅发现 DL 和 RAD 特征之间存在微弱的相关性。

结论

DL 算法成功地从术前 CET1-MR 图像中识别出脊柱转移瘤的来源,其性能优于 RAD 模型和经过培训的放射科医生的专家评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验