Suppr超能文献

使用基于磁共振成像的深度学习算法准确鉴别脊柱结核和脊柱转移瘤

Accurate Differentiation of Spinal Tuberculosis and Spinal Metastases Using MR-Based Deep Learning Algorithms.

作者信息

Duan Shuo, Dong Weijie, Hua Yichun, Zheng Yali, Ren Zengsuonan, Cao Guanmei, Wu Fangfang, Rong Tianhua, Liu Baoge

机构信息

Department of Orthopaedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.

Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China.

出版信息

Infect Drug Resist. 2023 Jul 4;16:4325-4334. doi: 10.2147/IDR.S417663. eCollection 2023.

Abstract

PURPOSE

To explore the application of deep learning (DL) methods based on T2 sagittal MR images for discriminating between spinal tuberculosis (STB) and spinal metastases (SM).

PATIENTS AND METHODS

A total of 121 patients with histologically confirmed STB and SM across four institutions were retrospectively analyzed. Data from two institutions were used for developing deep learning models and internal validation, while the remaining institutions' data were used for external testing. Utilizing MVITV2, EfficientNet-B3, ResNet101, and ResNet34 as backbone networks, we developed four distinct DL models and evaluated their diagnostic performance based on metrics such as accuracy (ACC), area under the receiver operating characteristic curve (AUC), F1 score, and confusion matrix. Furthermore, the external test images were blindly evaluated by two spine surgeons with different levels of experience. We also used Gradient-Class Activation Maps to visualize the high-dimensional features of different DL models.

RESULTS

For the internal validation set, MVITV2 outperformed other models with an accuracy of 98.7%, F1 score of 98.6%, and AUC of 0.98. Other models followed in this order: EfficientNet-B3 (ACC: 96.1%, F1 score: 95.9%, AUC: 0.99), ResNet101 (ACC: 85.5%, F1 score: 84.8%, AUC: 0.90), and ResNet34 (ACC: 81.6%, F1 score: 80.7%, AUC: 0.85). For the external test set, MVITV2 again performed excellently with an accuracy of 91.9%, F1 score of 91.5%, and an AUC of 0.95. EfficientNet-B3 came second (ACC: 85.9, F1 score: 91.5%, AUC: 0.91), followed by ResNet101 (ACC:80.8, F1 score: 80.0%, AUC: 0.87) and ResNet34 (ACC: 78.8, F1 score: 77.9%, AUC: 0.86). Additionally, the diagnostic accuracy of the less experienced spine surgeon was 73.7%, while that of the more experienced surgeon was 88.9%.

CONCLUSION

Deep learning based on T2WI sagittal images can help discriminate between STB and SM, and can achieve a level of diagnostic performance comparable with that produced by experienced spine surgeons.

摘要

目的

探讨基于T2矢状位磁共振成像(MR)图像的深度学习(DL)方法在鉴别脊柱结核(STB)和脊柱转移瘤(SM)中的应用。

患者与方法

回顾性分析了来自四个机构的121例经组织学确诊的STB和SM患者。两个机构的数据用于开发深度学习模型和内部验证,其余机构的数据用于外部测试。利用MVITV2、EfficientNet-B3、ResNet101和ResNet34作为骨干网络,我们开发了四种不同的DL模型,并基于准确率(ACC)、受试者操作特征曲线下面积(AUC)、F1分数和混淆矩阵等指标评估了它们的诊断性能。此外,由两位经验水平不同的脊柱外科医生对外部测试图像进行盲法评估。我们还使用梯度类激活映射来可视化不同DL模型的高维特征。

结果

对于内部验证集,MVITV2表现优于其他模型,准确率为98.7%,F1分数为98.6%,AUC为0.98。其他模型依次为:EfficientNet-B3(ACC:96.1%,F1分数:95.9%,AUC:0.99)、ResNet101(ACC:85.5%,F1分数:84. .8%,AUC:0.90)和ResNet34(ACC:81.6%,F1分数:80.7%,AUC:0.85)。对于外部测试集,MVITV2再次表现出色,准确率为91.9%,F1分数为91.5%,AUC为0.95。EfficientNet-B3位居第二(ACC:85.9,F1分数:91.5%,AUC:0.91),其次是ResNet101(ACC:80.8,F1分数:80.0%,AUC:0.87)和ResNet34(ACC:78.8,F1分数:77.9%,AUC: 0.86)。此外,经验较少的脊柱外科医生的诊断准确率为73.7%,而经验较丰富的医生为88.9%。

结论

基于T2WI矢状位图像的深度学习有助于鉴别STB和SM,并且可以达到与经验丰富的脊柱外科医生相当的诊断性能水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baca/10329448/4cddf3a296e4/IDR-16-4325-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验