Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA.
BMC Med Inform Decis Mak. 2023 Apr 14;23(1):68. doi: 10.1186/s12911-023-02148-w.
The incidence of diagnostic delays is unknown for many diseases and specific healthcare settings. Many existing methods to identify diagnostic delays are resource intensive or difficult to apply to different diseases or settings. Administrative and other real-world data sources may offer the ability to better identify and study diagnostic delays for a range of diseases.
We propose a comprehensive framework to estimate the frequency of missed diagnostic opportunities for a given disease using real-world longitudinal data sources. We provide a conceptual model of the disease-diagnostic, data-generating process. We then propose a bootstrapping method to estimate measures of the frequency of missed diagnostic opportunities and duration of delays. This approach identifies diagnostic opportunities based on signs and symptoms occurring prior to an initial diagnosis, while accounting for expected patterns of healthcare that may appear as coincidental symptoms. Three different bootstrapping algorithms are described along with estimation procedures to implement the resampling. Finally, we apply our approach to the diseases of tuberculosis, acute myocardial infarction, and stroke to estimate the frequency and duration of diagnostic delays for these diseases.
Using the IBM MarketScan Research databases from 2001 to 2017, we identified 2,073 cases of tuberculosis, 359,625 cases of AMI, and 367,768 cases of stroke. Depending on the simulation approach that was used, we estimated that 6.9-8.3% of patients with stroke, 16.0-21.3% of patients with AMI and 63.9-82.3% of patients with tuberculosis experienced a missed diagnostic opportunity. Similarly, we estimated that, on average, diagnostic delays lasted 6.7-7.6 days for stroke, 6.7-8.2 days for AMI, and 34.3-44.5 days for tuberculosis. Estimates for each of these measures was consistent with prior literature; however, specific estimates varied across the different simulation algorithms considered.
Our approach can be easily applied to study diagnostic delays using longitudinal administrative data sources. Moreover, this general approach can be customized to fit a range of diseases to account for specific clinical characteristics of a given disease. We summarize how the choice of simulation algorithm may impact the resulting estimates and provide guidance on the statistical considerations for applying our approach to future studies.
许多疾病和特定医疗保健环境的诊断延迟发生率尚不清楚。许多现有的识别诊断延迟的方法资源密集型或难以应用于不同的疾病或环境。行政和其他真实世界的数据来源可能有能力更好地识别和研究一系列疾病的诊断延迟。
我们提出了一个使用真实世界纵向数据来源估计特定疾病错过诊断机会频率的综合框架。我们提供了疾病-诊断、数据生成过程的概念模型。然后,我们提出了一种自举方法来估计错过诊断机会的频率和延迟持续时间的度量。这种方法根据初始诊断前发生的症状和体征来识别诊断机会,同时考虑可能表现为巧合症状的预期医疗保健模式。描述了三种不同的自举算法以及实施重采样的估计程序。最后,我们将我们的方法应用于结核病、急性心肌梗死和中风这三种疾病,以估计这些疾病的诊断延迟的频率和持续时间。
使用 2001 年至 2017 年的 IBM MarketScan 研究数据库,我们确定了 2073 例结核病、359625 例急性心肌梗死和 367768 例中风。根据使用的模拟方法,我们估计,6.9-8.3%的中风患者、16.0-21.3%的急性心肌梗死患者和 63.9-82.3%的结核病患者经历了一次漏诊机会。同样,我们估计,平均而言,中风的诊断延迟持续了 6.7-7.6 天,急性心肌梗死的诊断延迟持续了 6.7-8.2 天,结核病的诊断延迟持续了 34.3-44.5 天。这些措施的具体估计与先前的文献一致;然而,特定的估计因考虑的不同模拟算法而有所不同。
我们的方法可以轻松应用于使用纵向行政数据来源研究诊断延迟。此外,这种通用方法可以根据特定疾病的特定临床特征进行定制,以适应一系列疾病。我们总结了模拟算法的选择如何影响最终估计,并为将来的研究应用我们的方法提供了统计考虑的指导。