Suppr超能文献

人工智能与机器学习在结核病管理中的整合:从诊断到药物发现

Integration of AI and ML in Tuberculosis (TB) Management: From Diagnosis to Drug Discovery.

作者信息

Memon Sameeullah, Bibi Shabana, He Guozhong

机构信息

Institute of Health, Kunming Medical University, Kunming 650500, China.

Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan.

出版信息

Diseases. 2025 Jun 11;13(6):184. doi: 10.3390/diseases13060184.

Abstract

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. Despite the improvements in diagnostic techniques, the accuracy of TB diagnosis is still low. In recent years, the development of artificial intelligence (AI) has opened up new possibilities in diagnosing and treating TB with high accuracy compared to traditional methods. Traditional diagnostic techniques, such as sputum smear microscopy, culture tests, and chest X-rays, are time-consuming, with less sensitivity for the detection of TB in patients. Due to the new developments in AI, advanced diagnostic and treatment techniques have been developed with high accessibility, speed, and accuracy. AI, including various specific methodologies, is becoming vital in managing TB. Machine learning (ML) methodologies, such as support vector machines (SVMs) and random forests (RF), alongside deep learning (DL) technologies, particularly convolutional neural networks (CNNs) for image analysis, are employed to analyze diverse patient data, including medical images and biomarkers, to enhance the accuracy and speed of tuberculosis diagnosis. This study summarized the benefits and drawbacks of both traditional and AI-driven TB diagnosis, highlighting how AI can support traditional techniques to increase early detection, lower misdiagnosis, and strengthen international TB control initiatives.

摘要

结核病(TB)是由结核分枝杆菌引起的一种传染病。尽管诊断技术有所进步,但结核病诊断的准确性仍然较低。近年来,人工智能(AI)的发展为结核病的诊断和治疗开辟了新的可能性,相比传统方法,其具有更高的准确性。传统的诊断技术,如痰涂片显微镜检查、培养试验和胸部X光检查,耗时较长,对患者结核病检测的敏感性较低。由于人工智能的新发展,已经开发出了具有高可及性、速度和准确性的先进诊断和治疗技术。包括各种特定方法的人工智能在结核病管理中变得至关重要。机器学习(ML)方法,如支持向量机(SVM)和随机森林(RF),以及深度学习(DL)技术,特别是用于图像分析的卷积神经网络(CNN),被用于分析包括医学图像和生物标志物在内的各种患者数据,以提高结核病诊断的准确性和速度。本研究总结了传统结核病诊断和人工智能驱动的结核病诊断的优缺点,强调了人工智能如何支持传统技术以提高早期检测率、降低误诊率并加强国际结核病控制倡议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee71/12192536/19bd086a87c6/diseases-13-00184-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验