Suppr超能文献

基于三聚类的纵向数据分析分类用于预后预测:以肌萎缩侧索硬化症的相关临床终点为目标。

Triclustering-based classification of longitudinal data for prognostic prediction: targeting relevant clinical endpoints in amyotrophic lateral sclerosis.

机构信息

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.

INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.

出版信息

Sci Rep. 2023 Apr 15;13(1):6182. doi: 10.1038/s41598-023-33223-x.

Abstract

This work proposes a new class of explainable prognostic models for longitudinal data classification using triclusters. A new temporally constrained triclustering algorithm, termed TCtriCluster, is proposed to comprehensively find informative temporal patterns common to a subset of patients in a subset of features (triclusters), and use them as discriminative features within a state-of-the-art classifier with guarantees of interpretability. The proposed approach further enhances prediction with the potentialities of model explainability by revealing clinically relevant disease progression patterns underlying prognostics, describing features used for classification. The proposed methodology is used in the Amyotrophic Lateral Sclerosis (ALS) Portuguese cohort (N = 1321), providing the first comprehensive assessment of the prognostic limits of five notable clinical endpoints: need for non-invasive ventilation (NIV); need for an auxiliary communication device; need for percutaneous endoscopic gastrostomy (PEG); need for a caregiver; and need for a wheelchair. Triclustering-based predictors outperform state-of-the-art alternatives, being able to predict the need for auxiliary communication device (within 180 days) and the need for PEG (within 90 days) with an AUC above 90%. The approach was validated in clinical practice, supporting healthcare professionals in understanding the link between the highly heterogeneous patterns of ALS disease progression and the prognosis.

摘要

本研究提出了一种新的可解释预后模型类别,用于使用三聚类对纵向数据进行分类。提出了一种新的时间约束三聚类算法,称为 TCtriCluster,用于全面发现子集患者子集特征(三聚类)中常见的信息性时间模式,并将其用作具有可解释性保证的最先进分类器中的判别特征。该方法通过揭示预后潜在的临床相关疾病进展模式,描述用于分类的特征,进一步增强了预测能力和模型可解释性。该方法用于肌萎缩侧索硬化症 (ALS) 葡萄牙队列 (N=1321),首次全面评估了五个显著临床终点的预后极限:需要非侵入性通气 (NIV);需要辅助交流设备;需要经皮内窥镜胃造口术 (PEG);需要护理人员;和需要轮椅。基于三聚类的预测因子优于最先进的替代方案,能够以 AUC 高于 90%预测需要辅助交流设备(在 180 天内)和需要 PEG(在 90 天内)。该方法在临床实践中得到了验证,支持医疗保健专业人员了解 ALS 疾病进展的高度异质模式与预后之间的联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1398/10105751/be617fbde719/41598_2023_33223_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验