LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
Sci Rep. 2023 Apr 15;13(1):6182. doi: 10.1038/s41598-023-33223-x.
This work proposes a new class of explainable prognostic models for longitudinal data classification using triclusters. A new temporally constrained triclustering algorithm, termed TCtriCluster, is proposed to comprehensively find informative temporal patterns common to a subset of patients in a subset of features (triclusters), and use them as discriminative features within a state-of-the-art classifier with guarantees of interpretability. The proposed approach further enhances prediction with the potentialities of model explainability by revealing clinically relevant disease progression patterns underlying prognostics, describing features used for classification. The proposed methodology is used in the Amyotrophic Lateral Sclerosis (ALS) Portuguese cohort (N = 1321), providing the first comprehensive assessment of the prognostic limits of five notable clinical endpoints: need for non-invasive ventilation (NIV); need for an auxiliary communication device; need for percutaneous endoscopic gastrostomy (PEG); need for a caregiver; and need for a wheelchair. Triclustering-based predictors outperform state-of-the-art alternatives, being able to predict the need for auxiliary communication device (within 180 days) and the need for PEG (within 90 days) with an AUC above 90%. The approach was validated in clinical practice, supporting healthcare professionals in understanding the link between the highly heterogeneous patterns of ALS disease progression and the prognosis.
本研究提出了一种新的可解释预后模型类别,用于使用三聚类对纵向数据进行分类。提出了一种新的时间约束三聚类算法,称为 TCtriCluster,用于全面发现子集患者子集特征(三聚类)中常见的信息性时间模式,并将其用作具有可解释性保证的最先进分类器中的判别特征。该方法通过揭示预后潜在的临床相关疾病进展模式,描述用于分类的特征,进一步增强了预测能力和模型可解释性。该方法用于肌萎缩侧索硬化症 (ALS) 葡萄牙队列 (N=1321),首次全面评估了五个显著临床终点的预后极限:需要非侵入性通气 (NIV);需要辅助交流设备;需要经皮内窥镜胃造口术 (PEG);需要护理人员;和需要轮椅。基于三聚类的预测因子优于最先进的替代方案,能够以 AUC 高于 90%预测需要辅助交流设备(在 180 天内)和需要 PEG(在 90 天内)。该方法在临床实践中得到了验证,支持医疗保健专业人员了解 ALS 疾病进展的高度异质模式与预后之间的联系。