Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China.
Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
J Hazard Mater. 2023 Jul 5;453:131411. doi: 10.1016/j.jhazmat.2023.131411. Epub 2023 Apr 13.
Engineered nanoparticles (ENPs) can resist heavy metal toxicity in plants, but their coexposure still exhibits toxicity to plants compared to plants without exposure to ENPs and heavy metals. There have been few studies on the toxic mechanism of nano TiO-heavy metal coexposure and the effect mechanism of nano TiO in plants. Thus, transcriptomics and metabolomics were used to study the toxic mechanism of rutile nano TiO or TiO-Cd (rutile nano TiO and CdCl mixture) on rice (Oryza sativa L.). After 40 days of exposure, the plant height and root dry weight of rice were significantly decreased in the nano TiO-Cd group compared to the blank group (nano TiO and CdCl free). After Cd treatment, 423 differentially expressed genes (DEGs) and 16 differential metabolites were identified. Nano TiO exposure induced significant regulation of 299 DEGs and 6 metabolites. After nano TiO-Cd coexposure, 1660 DEGs and 181 differential metabolites were identified. Notably, the EDGs (e.g., chalcone isomerase and hydroxycinnamoyl transferase) and differential metabolites (e.g., chrysin and galangin) demonstrated the disruption of flavonoid biosynthesis in Cd-treated rice. After rice was exposed to nano TiO, the DEGs were related to ribosome, whereas the differential metabolites were associated with pyruvate metabolism and valine, leucine, and isoleucine biosynthesis. Furthermore, 14 DEGs (e.g., asparaginyl-tRNA synthetase and methionyl-tRNA formyltransferase) involved in aminoacyl-tRNA biosynthetic pathways were significantly upregulated in rice treated with nano TiO-Cd, in line with the changes in related metabolites (e.g., L-asparagine and 10-formyltetrahydrofolate). Our results show that it is necessary to pay close attention to the toxicity of nano TiO-Cd coexposure in paddy ecosystems and use ENPs with caution to combat the phytotoxicity of heavy metals.
工程纳米粒子(ENPs)可以抵抗植物中的重金属毒性,但与未暴露于 ENPs 和重金属的植物相比,它们的共同暴露仍表现出对植物的毒性。关于纳米 TiO-重金属共暴露的毒性机制以及纳米 TiO 在植物中的作用机制的研究较少。因此,使用转录组学和代谢组学研究了锐钛矿纳米 TiO 或 TiO-Cd(锐钛矿纳米 TiO 和 CdCl 的混合物)对水稻(Oryza sativa L.)的毒性机制。暴露 40 天后,与空白组(无纳米 TiO 和 CdCl)相比,纳米 TiO-Cd 组水稻的株高和根干重明显降低。Cd 处理后,鉴定出 423 个差异表达基因(DEGs)和 16 个差异代谢物。纳米 TiO 暴露诱导 299 个 DEGs 和 6 个代谢物的显著调控。纳米 TiO-Cd 共暴露后,鉴定出 1660 个 DEGs 和 181 个差异代谢物。值得注意的是,EDGs(如查尔酮异构酶和羟基肉桂酰转移酶)和差异代谢物(如白杨素和高良姜素)表明 Cd 处理的水稻中类黄酮生物合成受到干扰。在水稻暴露于纳米 TiO 后,DEGs 与核糖体有关,而差异代谢物与丙酮酸代谢和缬氨酸、亮氨酸和异亮氨酸生物合成有关。此外,纳米 TiO-Cd 处理的水稻中 14 个参与氨酰-tRNA 生物合成途径的 DEGs(如天冬酰胺酰-tRNA 合成酶和甲硫氨酰-tRNA 甲酰转移酶)显著上调,与相关代谢物(如 L-天冬酰胺和 10-甲酰四氢叶酸)的变化一致。我们的结果表明,有必要密切关注稻田生态系统中纳米 TiO-Cd 共暴露的毒性,并谨慎使用 ENPs 以对抗重金属的植物毒性。