Suppr超能文献

通过放射组学和形式化方法预测软组织肉瘤转移和复发的风险。

Predicting risk of metastases and recurrence in soft-tissue sarcomas via Radiomics and Formal Methods.

作者信息

Casale Roberto, Varriano Giulia, Santone Antonella, Messina Carmelo, Casale Chiara, Gitto Salvatore, Sconfienza Luca Maria, Bali Maria Antonietta, Brunese Luca

机构信息

Department of Radiology, Institut Jules Bordet-Université Libre de Bruxelles (ULB), Brussels, Belgium.

Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy.

出版信息

JAMIA Open. 2023 Apr 12;6(2):ooad025. doi: 10.1093/jamiaopen/ooad025. eCollection 2023 Jul.

Abstract

OBJECTIVE

Soft-tissue sarcomas (STSs) of the extremities are a group of malignancies arising from the mesenchymal cells that may develop distant metastases or local recurrence. In this article, we propose a novel methodology aimed to predict metastases and recurrence risk in patients with these malignancies by evaluating magnetic resonance radiomic features that will be formally verified through formal logic models.

MATERIALS AND METHODS

This is a retrospective study based on a public dataset evaluating MRI scans T2-weighted fat-saturated or short tau inversion recovery and patients having "metastases/local recurrence" (group B) or "no metastases/no local recurrence" (group A) as clinical outcomes. Once radiomic features are extracted, they are included in formal models, on which is automatically verified the logic property written by a radiologist and his computer scientists coworkers.

RESULTS

Evaluating the Formal Methods efficacy in predicting distant metastases/local recurrence in STSs (group A vs group B), our methodology showed a sensitivity and specificity of 0.81 and 0.67, respectively; this suggests that radiomics and formal verification may be useful in predicting future metastases or local recurrence development in soft tissue sarcoma.

DISCUSSION

Authors discussed about the literature to consider Formal Methods as a valid alternative to other Artificial Intelligence techniques.

CONCLUSIONS

An innovative and noninvasive rigourous methodology can be significant in predicting local recurrence and metastases development in STSs. Future works can be the assessment on multicentric studies to extract objective disease information, enriching the connection between the radiomic quantitative analysis and the radiological clinical evidences.

摘要

目的

四肢软组织肉瘤(STS)是一组起源于间充质细胞的恶性肿瘤,可能发生远处转移或局部复发。在本文中,我们提出了一种新方法,旨在通过评估磁共振影像组学特征来预测这些恶性肿瘤患者的转移和复发风险,这些特征将通过形式逻辑模型进行正式验证。

材料与方法

这是一项基于公共数据集的回顾性研究,评估T2加权脂肪饱和或短tau反转恢复序列的MRI扫描,以及以“转移/局部复发”(B组)或“无转移/无局部复发”(A组)为临床结局的患者。一旦提取出影像组学特征,就将其纳入形式模型,由放射科医生及其计算机科学家同事编写的逻辑属性将在该模型上自动得到验证。

结果

评估形式方法在预测STS远处转移/局部复发(A组与B组)方面的有效性,我们的方法显示敏感性和特异性分别为0.81和0.67;这表明影像组学和形式验证可能有助于预测软组织肉瘤未来的转移或局部复发情况。

讨论

作者讨论了相关文献,认为形式方法可作为其他人工智能技术的有效替代方法。

结论

一种创新的、非侵入性的严谨方法在预测STS的局部复发和转移发展方面可能具有重要意义。未来的工作可以是进行多中心研究评估,以提取客观的疾病信息,丰富影像组学定量分析与放射学临床证据之间的联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d69/10097456/73db28f439fb/ooad025f1.jpg

相似文献

1
Predicting risk of metastases and recurrence in soft-tissue sarcomas via Radiomics and Formal Methods.
JAMIA Open. 2023 Apr 12;6(2):ooad025. doi: 10.1093/jamiaopen/ooad025. eCollection 2023 Jul.
2
Soft Tissue Sarcomas: Preoperative Predictive Histopathological Grading Based on Radiomics of MRI.
Acad Radiol. 2019 Sep;26(9):1262-1268. doi: 10.1016/j.acra.2018.09.025. Epub 2018 Oct 28.
3
Radiomics and artificial intelligence for soft-tissue sarcomas: Current status and perspectives.
Diagn Interv Imaging. 2023 Dec;104(12):567-583. doi: 10.1016/j.diii.2023.09.005. Epub 2023 Oct 4.
4
MRI Fat-Saturated T2-Weighted Radiomics Model for Identifying the Ki-67 Index of Soft Tissue Sarcomas.
J Magn Reson Imaging. 2023 Aug;58(2):534-545. doi: 10.1002/jmri.28518. Epub 2022 Nov 3.
6
Deep learning radiomic nomogram to predict recurrence in soft tissue sarcoma: a multi-institutional study.
Eur Radiol. 2022 Feb;32(2):793-805. doi: 10.1007/s00330-021-08221-0. Epub 2021 Aug 27.
8

引用本文的文献

2
An Explainable Radiomics-Based Classification Model for Sarcoma Diagnosis.
Diagnostics (Basel). 2025 Aug 20;15(16):2098. doi: 10.3390/diagnostics15162098.
3
The impact of radiomics in the management of soft tissue sarcoma.
Discov Oncol. 2024 Mar 5;15(1):62. doi: 10.1007/s12672-024-00908-2.
4
AI applications in musculoskeletal imaging: a narrative review.
Eur Radiol Exp. 2024 Feb 15;8(1):22. doi: 10.1186/s41747-024-00422-8.
5
The Impact of Edema on MRI Radiomics for the Prediction of Lung Metastasis in Soft Tissue Sarcoma.
Diagnostics (Basel). 2023 Oct 5;13(19):3134. doi: 10.3390/diagnostics13193134.

本文引用的文献

1
Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance.
Radiol Med. 2022 May;127(5):518-525. doi: 10.1007/s11547-022-01468-7. Epub 2022 Mar 23.
2
PET/MR fusion texture analysis for the clinical outcome prediction in soft-tissue sarcoma.
Cancer Imaging. 2022 Jan 12;22(1):7. doi: 10.1186/s40644-021-00438-y.
4
Radiomics-based machine-learning method for prediction of distant metastasis from soft-tissue sarcomas.
Clin Radiol. 2021 Feb;76(2):158.e19-158.e25. doi: 10.1016/j.crad.2020.08.038. Epub 2020 Dec 5.
6
Radiomics in medical imaging-"how-to" guide and critical reflection.
Insights Imaging. 2020 Aug 12;11(1):91. doi: 10.1186/s13244-020-00887-2.
7
8
Can radiomics improve the prediction of metastatic relapse of myxoid/round cell liposarcomas?
Eur Radiol. 2020 May;30(5):2413-2424. doi: 10.1007/s00330-019-06562-5. Epub 2020 Jan 17.
9
High-Grade Soft-Tissue Sarcomas: Can Optimizing Dynamic Contrast-Enhanced MRI Postprocessing Improve Prognostic Radiomics Models?
J Magn Reson Imaging. 2020 Jul;52(1):282-297. doi: 10.1002/jmri.27040. Epub 2020 Jan 10.
10
Tumor grading of soft tissue sarcomas using MRI-based radiomics.
EBioMedicine. 2019 Oct;48:332-340. doi: 10.1016/j.ebiom.2019.08.059. Epub 2019 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验