Dipartimento Di Scienze Biomediche Per La Salute, Università Degli Studi Di Milano, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
Department of Electronics, Information and Bioengineering (DEIB), Politecnico Di Milano, Via Golgi 39, 20133, Milan, Italy.
Radiol Med. 2022 May;127(5):518-525. doi: 10.1007/s11547-022-01468-7. Epub 2022 Mar 23.
To evaluate stability and machine learning-based classification performance of radiomic features of spine bone tumors using diffusion- and T2-weighted magnetic resonance imaging (MRI).
This retrospective study included 101 patients with histology-proven spine bone tumor (22 benign; 38 primary malignant; 41 metastatic). All tumor volumes were manually segmented on morphologic T2-weighted sequences. The same region of interest (ROI) was used to perform radiomic analysis on ADC map. A total of 1702 radiomic features was considered. Feature stability was assessed through small geometrical transformations of the ROIs mimicking multiple manual delineations. Intraclass correlation coefficient (ICC) quantified feature stability. Feature selection consisted of stability-based (ICC > 0.75) and significance-based selections (ranking features by decreasing Mann-Whitney p-value). Class balancing was performed to oversample the minority (i.e., benign) class. Selected features were used to train and test a support vector machine (SVM) to discriminate benign from malignant spine tumors using tenfold cross-validation.
A total of 76.4% radiomic features were stable. The quality metrics for the SVM were evaluated as a function of the number of selected features. The radiomic model with the best performance and the lowest number of features for classifying tumor types included 8 features. The metrics were 78% sensitivity, 68% specificity, 76% accuracy and AUC 0.78.
SVM classifiers based on radiomic features extracted from T2- and diffusion-weighted imaging with ADC map are promising for classification of spine bone tumors. Radiomic features of spine bone tumors show good reproducibility rates.
利用弥散加权和 T2 加权磁共振成像(MRI)评估脊柱骨肿瘤的放射组学特征的稳定性和基于机器学习的分类性能。
本回顾性研究纳入了 101 例经组织学证实的脊柱骨肿瘤患者(22 例良性,38 例原发性恶性,41 例转移性)。所有肿瘤体积均在形态学 T2 加权序列上进行手动分割。同一感兴趣区(ROI)用于在 ADC 图上进行放射组学分析。共考虑了 1702 个放射组学特征。通过模拟多次手动勾画的 ROI 的小几何变换来评估特征稳定性。组内相关系数(ICC)量化了特征稳定性。特征选择包括基于稳定性(ICC>0.75)和基于显著性的选择(通过降低 Mann-Whitney p 值对特征进行排序)。进行类别平衡以过采样少数(即良性)类别。选择的特征用于使用十折交叉验证训练和测试支持向量机(SVM),以区分良性和恶性脊柱肿瘤。
共有 76.4%的放射组学特征是稳定的。SVM 的质量指标是作为所选特征数量的函数来评估的。用于对肿瘤类型进行分类的性能最佳且所选特征数量最少的放射组学模型包括 8 个特征。指标分别为 78%的敏感性、68%的特异性、76%的准确性和 AUC 0.78。
基于 T2 加权和扩散加权成像与 ADC 图提取的放射组学特征的 SVM 分类器有望用于脊柱骨肿瘤的分类。脊柱骨肿瘤的放射组学特征具有良好的可重复性。