Suppr超能文献

利用具有连续易出错暴露因素估计因果暴露反应函数:细颗粒物与全因死亡率的研究

Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality.

作者信息

Josey Kevin P, deSouza Priyanka, Wu Xiao, Braun Danielle, Nethery Rachel

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA.

Department of Urban and Regional Planning, University of Colorado, Denver, CO.

出版信息

J Agric Biol Environ Stat. 2023 Mar;28(1):20-41. doi: 10.1007/s13253-022-00508-z. Epub 2022 Sep 11.

Abstract

Numerous studies have examined the associations between long-term exposure to fine particulate matter (PM) and adverse health outcomes. Recently, many of these studies have begun to employ high-resolution predicted PM concentrations, which are subject to measurement error. Previous approaches for exposure measurement error correction have either been applied in non-causal settings or have only considered a categorical exposure. Moreover, most procedures have failed to account for uncertainty induced by error correction when fitting an exposure-response function (ERF). To remedy these deficiencies, we develop a multiple imputation framework that combines regression calibration and Bayesian techniques to estimate a causal ERF. We demonstrate how the output of the measurement error correction steps can be seamlessly integrated into a Bayesian additive regression trees (BART) estimator of the causal ERF. We also demonstrate how locally-weighted smoothing of the posterior samples from BART can be used to create a more accurate ERF estimate. Our proposed approach also properly propagates the exposure measurement error uncertainty to yield accurate standard error estimates. We assess the robustness of our proposed approach in an extensive simulation study. We then apply our methodology to estimate the effects of PM on all-cause mortality among Medicare enrollees in New England from 2000-2012.

摘要

众多研究已考察了长期暴露于细颗粒物(PM)与不良健康结局之间的关联。最近,这些研究中有许多已开始采用高分辨率预测的PM浓度,而这些浓度存在测量误差。先前用于校正暴露测量误差的方法要么应用于非因果环境,要么仅考虑了分类暴露。此外,大多数程序在拟合暴露-反应函数(ERF)时未能考虑误差校正所引发的不确定性。为弥补这些不足,我们开发了一个多重填补框架,该框架结合回归校准和贝叶斯技术来估计因果ERF。我们展示了测量误差校正步骤的输出如何能无缝整合到因果ERF的贝叶斯加法回归树(BART)估计器中。我们还展示了如何使用来自BART的后验样本的局部加权平滑来创建更准确的ERF估计。我们提出的方法还能恰当地传播暴露测量误差的不确定性,以得出准确的标准误差估计。我们在一项广泛的模拟研究中评估了我们提出的方法的稳健性。然后,我们应用我们的方法来估计2000年至2012年期间PM对新英格兰医疗保险参保者全因死亡率的影响。

相似文献

1
Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality.
J Agric Biol Environ Stat. 2023 Mar;28(1):20-41. doi: 10.1007/s13253-022-00508-z. Epub 2022 Sep 11.
3
Measurement error correction for ambient PM exposure using stratified regression calibration: Effects on all-cause mortality.
Environ Res. 2023 Jan 1;216(Pt 4):114792. doi: 10.1016/j.envres.2022.114792. Epub 2022 Nov 11.
4
CAUSAL INFERENCE IN THE CONTEXT OF AN ERROR PRONE EXPOSURE: AIR POLLUTION AND MORTALITY.
Ann Appl Stat. 2019 Mar;13(1):520-547. doi: 10.1214/18-AOAS1206. Epub 2019 Apr 10.

引用本文的文献

3
Policy-induced air pollution health disparities: Statistical and data science considerations.
Science. 2024 Jul 26;385(6707):391-396. doi: 10.1126/science.adp1870. Epub 2024 Jul 25.
4
Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution: The HEI Experience and What's Next?
Environ Sci Technol. 2024 Jul 23;58(29):12767-12783. doi: 10.1021/acs.est.3c09745. Epub 2024 Jul 11.
6
Air pollution and serious bleeding events in high-risk older adults.
Environ Res. 2024 Jun 15;251(Pt 1):118628. doi: 10.1016/j.envres.2024.118628. Epub 2024 Mar 7.
7
Mortality risk from United States coal electricity generation.
Science. 2023 Nov 24;382(6673):941-946. doi: 10.1126/science.adf4915. Epub 2023 Nov 23.
9
Air Pollution and Cardiovascular and Thromboembolic Events in Older Adults With High-Risk Conditions.
Am J Epidemiol. 2023 Aug 4;192(8):1358-1370. doi: 10.1093/aje/kwad089.
10
Air Pollution and Mortality at the Intersection of Race and Social Class.
N Engl J Med. 2023 Apr 13;388(15):1396-1404. doi: 10.1056/NEJMsa2300523. Epub 2023 Mar 24.

本文引用的文献

1
Matching on Generalized Propensity Scores with Continuous Exposures.
J Am Stat Assoc. 2024;119(545):757-772. doi: 10.1080/01621459.2022.2144737. Epub 2022 Dec 12.
2
Long-Term Association of Air Pollution and Hospital Admissions Among Medicare Participants Using a Doubly Robust Additive Model.
Circulation. 2021 Apr 20;143(16):1584-1596. doi: 10.1161/CIRCULATIONAHA.120.050252. Epub 2021 Feb 22.
4
Causal inference in high dimensions: A marriage between Bayesian modeling and good frequentist properties.
Biometrics. 2022 Mar;78(1):100-114. doi: 10.1111/biom.13417. Epub 2020 Dec 31.
5
Evaluating the impact of long-term exposure to fine particulate matter on mortality among the elderly.
Sci Adv. 2020 Jul 17;6(29):eaba5692. doi: 10.1126/sciadv.aba5692. eCollection 2020 Jul.
6
Bias due to Berkson error: issues when using predicted values in place of observed covariates.
Biostatistics. 2021 Oct 13;22(4):858-872. doi: 10.1093/biostatistics/kxaa002.
7
CAUSAL INFERENCE IN THE CONTEXT OF AN ERROR PRONE EXPOSURE: AIR POLLUTION AND MORTALITY.
Ann Appl Stat. 2019 Mar;13(1):520-547. doi: 10.1214/18-AOAS1206. Epub 2019 Apr 10.
8
Long-term exposure to PM and ozone and hospital admissions of Medicare participants in the Southeast USA.
Environ Int. 2019 Sep;130:104879. doi: 10.1016/j.envint.2019.05.073. Epub 2019 Jun 22.
9
Impact of Long-Term Exposures to Ambient PM and Ozone on ARDS Risk for Older Adults in the United States.
Chest. 2019 Jul;156(1):71-79. doi: 10.1016/j.chest.2019.03.017. Epub 2019 Mar 26.
10
Causal inference with interfering units for cluster and population level treatment allocation programs.
Biometrics. 2019 Sep;75(3):778-787. doi: 10.1111/biom.13049. Epub 2019 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验