Josey Kevin P, deSouza Priyanka, Wu Xiao, Braun Danielle, Nethery Rachel
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA.
Department of Urban and Regional Planning, University of Colorado, Denver, CO.
J Agric Biol Environ Stat. 2023 Mar;28(1):20-41. doi: 10.1007/s13253-022-00508-z. Epub 2022 Sep 11.
Numerous studies have examined the associations between long-term exposure to fine particulate matter (PM) and adverse health outcomes. Recently, many of these studies have begun to employ high-resolution predicted PM concentrations, which are subject to measurement error. Previous approaches for exposure measurement error correction have either been applied in non-causal settings or have only considered a categorical exposure. Moreover, most procedures have failed to account for uncertainty induced by error correction when fitting an exposure-response function (ERF). To remedy these deficiencies, we develop a multiple imputation framework that combines regression calibration and Bayesian techniques to estimate a causal ERF. We demonstrate how the output of the measurement error correction steps can be seamlessly integrated into a Bayesian additive regression trees (BART) estimator of the causal ERF. We also demonstrate how locally-weighted smoothing of the posterior samples from BART can be used to create a more accurate ERF estimate. Our proposed approach also properly propagates the exposure measurement error uncertainty to yield accurate standard error estimates. We assess the robustness of our proposed approach in an extensive simulation study. We then apply our methodology to estimate the effects of PM on all-cause mortality among Medicare enrollees in New England from 2000-2012.
众多研究已考察了长期暴露于细颗粒物(PM)与不良健康结局之间的关联。最近,这些研究中有许多已开始采用高分辨率预测的PM浓度,而这些浓度存在测量误差。先前用于校正暴露测量误差的方法要么应用于非因果环境,要么仅考虑了分类暴露。此外,大多数程序在拟合暴露-反应函数(ERF)时未能考虑误差校正所引发的不确定性。为弥补这些不足,我们开发了一个多重填补框架,该框架结合回归校准和贝叶斯技术来估计因果ERF。我们展示了测量误差校正步骤的输出如何能无缝整合到因果ERF的贝叶斯加法回归树(BART)估计器中。我们还展示了如何使用来自BART的后验样本的局部加权平滑来创建更准确的ERF估计。我们提出的方法还能恰当地传播暴露测量误差的不确定性,以得出准确的标准误差估计。我们在一项广泛的模拟研究中评估了我们提出的方法的稳健性。然后,我们应用我们的方法来估计2000年至2012年期间PM对新英格兰医疗保险参保者全因死亡率的影响。