Suppr超能文献

使用因果推断和机器学习评估1990年《清洁空气法修正案》对健康的影响。

Evaluation of the health impacts of the 1990 Clean Air Act Amendments using causal inference and machine learning.

作者信息

Nethery Rachel C, Mealli Fabrizia, Sacks Jason D, Dominici Francesca

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health.

Department of Statistics, Computer Science, Applications, University of Florence.

出版信息

J Am Stat Assoc. 2020 Sep 16;1:1-12. doi: 10.1080/01621459.2020.1803883.

Abstract

We develop a causal inference approach to estimate the number of adverse health events that were prevented due to changes in exposure to multiple pollutants attributable to a large-scale air quality intervention/regulation, with a focus on the 1990 Clean Air Act Amendments (CAAA). We introduce a causal estimand called the Total Events Avoided (TEA) by the regulation, defined as the difference in the number of health events expected under the no-regulation pollution exposures and the number observed with-regulation. We propose matching and machine learning methods that leverage population-level pollution and health data to estimate the TEA. Our approach improves upon traditional methods for regulation health impact analyses by formalizing causal identifying assumptions, utilizing population-level data, minimizing parametric assumptions, and collectively analyzing multiple pollutants. To reduce model-dependence, our approach estimates cumulative health impacts in the subset of regions with projected no-regulation features lying within the support of the observed with-regulation data, thereby providing a conservative but data-driven assessment to complement traditional parametric approaches. We analyze the health impacts of the CAAA in the US Medicare population in the year 2000, and our estimates suggest that large numbers of cardiovascular and dementia-related hospitalizations were avoided due to CAAA-attributable changes in pollution exposure.

摘要

我们开发了一种因果推断方法,以估计由于大规模空气质量干预/监管导致的多种污染物暴露变化而预防的不良健康事件数量,重点关注1990年《清洁空气法修正案》(CAAA)。我们引入了一个由该法规导致的名为“避免的总事件”(TEA)的因果估计量,定义为在无监管污染暴露情况下预期的健康事件数量与有监管情况下观察到的数量之差。我们提出了匹配和机器学习方法,利用人口层面的污染和健康数据来估计TEA。我们的方法通过形式化因果识别假设、利用人口层面数据、最小化参数假设以及共同分析多种污染物,改进了传统的监管健康影响分析方法。为了减少对模型的依赖,我们的方法在观察到的有监管数据的支持范围内,估计具有预计无监管特征的区域子集中的累积健康影响,从而提供一种保守但数据驱动的评估,以补充传统的参数方法。我们分析了2000年美国医疗保险人群中CAAA的健康影响,我们的估计表明,由于CAAA导致的污染暴露变化,大量心血管疾病和痴呆相关的住院治疗得以避免。

相似文献

6
8
Assessing the short term impact of air pollution on mortality: a matching approach.
Environ Health. 2017 Feb 10;16(1):7. doi: 10.1186/s12940-017-0215-7.

引用本文的文献

1
Global burden of pulmonary sarcoidosis from 1990 to 2021: a comprehensive analysis based on the GBD 2021 study.
Front Med (Lausanne). 2025 May 16;12:1585005. doi: 10.3389/fmed.2025.1585005. eCollection 2025.
5
Causal analysis of air pollution mixtures: estimands, positivity, and extrapolation.
Am J Epidemiol. 2024 Oct 7;193(10):1392-1398. doi: 10.1093/aje/kwae115.
6
Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and All-Cause Mortality.
J Agric Biol Environ Stat. 2023 Mar;28(1):20-41. doi: 10.1007/s13253-022-00508-z. Epub 2022 Sep 11.
7
An integrated analysis of air pollution and meteorological conditions in Jakarta.
Sci Rep. 2023 Apr 9;13(1):5798. doi: 10.1038/s41598-023-32817-9.
9
Methods for Evaluating Environmental Health Impacts at Different Stages of the Policy Process in Cities.
Curr Environ Health Rep. 2022 Jun;9(2):183-195. doi: 10.1007/s40572-022-00349-5. Epub 2022 Apr 7.

本文引用的文献

1
Matching on Generalized Propensity Scores with Continuous Exposures.
J Am Stat Assoc. 2024;119(545):757-772. doi: 10.1080/01621459.2022.2144737. Epub 2022 Dec 12.
7
Causal inference with interfering units for cluster and population level treatment allocation programs.
Biometrics. 2019 Sep;75(3):778-787. doi: 10.1111/biom.13049. Epub 2019 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验