Suppr超能文献

城市街道的修复感知:深度学习和 MGWR 模型的解释。

Restorative perception of urban streets: Interpretation using deep learning and MGWR models.

机构信息

Department of Landscape Architecture, Kyungpook National University, Daegu, Republic of Korea.

School of Architecture, Tianjin University, Tianjin, China.

出版信息

Front Public Health. 2023 Mar 30;11:1141630. doi: 10.3389/fpubh.2023.1141630. eCollection 2023.

Abstract

Restorative environments help people recover from mental fatigue and negative emotional and physical reactions to stress. Excellent restorative environments in urban streets help people focus and improve their daily behavioral performance, allowing them to regain efficient information processing skills and cognitive levels. High-density urban spaces create obstacles in resident interactions with the natural environment. For urban residents, the restorative function of the urban space is more important than that of the natural environment in the suburbs. An urban street is a spatial carrier used by residents on a daily basis; thus, the urban street has considerable practical value in terms of improving the urban environment to have effective restorative function. Thus, in this study, we explored a method to determine the perceived restorability of urban streets using street view data, deep learning models, and the Ordinary Least Squares (OLS), the multiscale geographically weighted regression (MGWR) model. We performed an empirical study in the Nanshan District of Shenzhen, China. Nanshan District is a typical high-density city area in China with a large population and limited urban resources. Using the street view images of the study area, a deep learning scoring model was developed, the SegNet algorithm was introduced to segment and classify the visual street elements, and a random forest algorithm based on the restorative factor scale was employed to evaluate the restorative perception of urban streets. In this study, spatial heterogeneity could be observed in the restorative perception data, and the MGWR models yielded higher interpretation strength in terms of processing the urban street restorative data compared to the ordinary least squares and geographically weighted regression (GWR) models. The MGWR model is a regression model that uses different bandwidths for different visual street elements, thereby allowing additional detailed observation of the extent and relevance of the impact of different elements on restorative perception. Our research also supports the exploration of the size of areas where heterogeneity exists in space for each visual street element. We believe that our results can help develop informed design guidelines to enhance street restorative and help professionals develop targeted design improvement concepts based on the restorative nature of the urban street.

摘要

恢复性环境有助于人们从精神疲劳和对压力的负面情绪及身体反应中恢复过来。城市街道中的优良恢复性环境有助于人们集中注意力,提高日常行为表现,使他们重新获得高效的信息处理技能和认知水平。高密度的城市空间会阻碍居民与自然环境的互动。对于城市居民来说,城市空间的恢复功能比郊区的自然环境更为重要。城市街道是居民日常使用的空间载体;因此,改善城市环境以具有有效的恢复功能,城市街道具有相当大的实际价值。因此,在本研究中,我们使用街景数据、深度学习模型和普通最小二乘法(OLS)、多尺度地理加权回归(MGWR)模型,探索了一种确定城市街道感知恢复性的方法。我们在中国深圳市南山区进行了实证研究。南山区是中国典型的人口密度大、城市资源有限的高密度城区。利用研究区的街景图像,开发了深度学习评分模型,引入 SegNet 算法对视觉街道元素进行分割和分类,并采用基于恢复因子尺度的随机森林算法评估城市街道的恢复感知。在本研究中,可以观察到恢复感知数据的空间异质性,并且与普通最小二乘法和地理加权回归(GWR)模型相比,MGWR 模型在处理城市街道恢复数据方面具有更高的解释强度。MGWR 模型是一种回归模型,它为不同的视觉街道元素使用不同的带宽,从而可以更详细地观察不同元素对恢复感知的影响的程度和相关性。我们的研究还支持对每个视觉街道元素的空间异质性存在的区域大小进行探索。我们相信,我们的研究结果可以帮助制定明智的设计指南,以增强街道的恢复性,并帮助专业人士根据城市街道的恢复性特征制定有针对性的设计改进概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e110/10101336/9fe86b88883e/fpubh-11-1141630-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验