Suppr超能文献

基于多源数据的建筑环境与心血管疾病关系的空间尺度分析。

Spatial scale analysis for the relationships between the built environment and cardiovascular disease based on multi-source data.

机构信息

School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, PR China.

Business School, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, PR China.

出版信息

Health Place. 2023 Sep;83:103048. doi: 10.1016/j.healthplace.2023.103048. Epub 2023 Jun 21.

Abstract

To examine what built environment characteristics improve the health outcomes of human beings is always a hot issue. While a growing literature has analyzed the link between the built environment and health, few studies have investigated this relationship across different spatial scales. In this study, eighteen variables were selected from multi-source data and reduced to eight built environment attributes using principal component analysis. These attributes included socioeconomic deprivation, urban density, street walkability, land-use diversity, blue-green space, transportation convenience, ageing, and street insecurity. Multiscale geographically weighted regression was then employed to clarify how these attributes relate to cardiovascular disease at different scales. The results indicated that: (1) multiscale geographically weighted regression showed a better fit of the association between the built environment and cardiovascular diseases than other models (e.g., ordinary least squares and geographically weighted regression), and is thus an effective approach for multiscale analysis of the built environment and health associations; (2) built environment variables related to cardiovascular diseases can be divided into global variables with large scales (e.g., socioeconomic deprivation, street walkability, land-use diversity, blue-green space, transportation convenience, and ageing) and local variables with small scales (e.g., urban density and street insecurity); and (3) at specific spatial scales, global variables had trivial spatial variation across the area, while local variables showed significant gradients. These findings provide greater insight into the association between the built environment and lifestyle-related diseases in densely populated cities, emphasizing the significance of hierarchical and place-specific policy formation in health interventions.

摘要

研究改善人类健康的建筑环境特征一直是一个热点问题。虽然越来越多的文献分析了建筑环境与健康之间的联系,但很少有研究在不同的空间尺度上研究这种关系。在这项研究中,从多源数据中选择了十八个变量,并使用主成分分析将其简化为八个建筑环境属性。这些属性包括社会经济剥夺、城市密度、街道可达性、土地利用多样性、蓝绿空间、交通便利性、老龄化和街道不安全。然后采用多尺度地理加权回归来阐明这些属性如何与不同尺度的心血管疾病相关。结果表明:(1)多尺度地理加权回归比其他模型(如普通最小二乘法和地理加权回归)更能拟合建筑环境与心血管疾病之间的关系,因此是一种有效的建筑环境与健康关系的多尺度分析方法;(2)与心血管疾病相关的建筑环境变量可分为具有大尺度的全局变量(如社会经济剥夺、街道可达性、土地利用多样性、蓝绿空间、交通便利性和老龄化)和具有小尺度的局部变量(如城市密度和街道不安全);(3)在特定的空间尺度上,全局变量在整个区域的空间变化很小,而局部变量则表现出显著的梯度。这些发现为人口密集城市的建筑环境与生活方式相关疾病之间的关联提供了更深入的了解,强调了分层和特定地点的政策制定在健康干预中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验