Langa Paulina, Marszalek Richard J, Warren Chad M, Chowdhury Shamim K, Halas Monika, Batra Ashley, Rafael-Clyke Koreena, Bacon Angelie, Goldspink Paul H, Solaro R John, Wolska Beata M
Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
Front Physiol. 2023 Mar 31;14:1136852. doi: 10.3389/fphys.2023.1136852. eCollection 2023.
Hypertrophic cardiomyopathy (HCM) is a cardiovascular genetic disease caused largely by sarcomere protein mutations. Gaps in our understanding exist as to how maladaptive sarcomeric biophysical signals are transduced to intra- and extracellular compartments leading to HCM progression. To investigate early HCM progression, we focused on the onset of myofilament dysfunction during neonatal development and examined cardiac dynamics, coronary vascular structure and function, and mechano-transduction signaling in mice harboring a thin-filament HCM mutation. We studied postnatal days 7-28 (P7-P28) in transgenic (TG) TG-cTnT-R92Q and non-transgenic (NTG) mice using skinned fiber mechanics, echocardiography, biochemistry, histology, and immunohistochemistry. At P7, skinned myofiber bundles exhibited an increased Ca-sensitivity (pCa TG: 5.97 ± 0.04, NTG: 5.84 ± 0.01) resulting from cTnT-R92Q expression on a background of slow skeletal (fetal) troponin I and α/β myosin heavy chain isoform expression. Despite the transition to adult isoform expressions between P7-P14, the increased Ca- sensitivity persisted through P28 with no apparent differences in gross morphology among TG and NTG hearts. At P7 significant diastolic dysfunction was accompanied by coronary flow perturbation (mean diastolic velocity, TG: 222.5 ± 18.81 mm/s, NTG: 338.7 ± 28.07 mm/s) along with localized fibrosis (TG: 4.36% ± 0.44%, NTG: 2.53% ± 0.47%). Increased phosphorylation of phospholamban (PLN) was also evident indicating abnormalities in Ca homeostasis. By P14 there was a decline in arteriolar cross-sectional area along with an expansion of fibrosis (TG: 9.72% ± 0.73%, NTG: 2.72% ± 0.2%). In comparing mechano-transduction signaling in the coronary arteries, we uncovered an increase in endothelial YAP expression with a decrease in its nuclear to cytosolic ratio at P14 in TG hearts, which was reversed by P28. We conclude that those early mechanisms that presage hypertrophic remodeling in HCM include defective biophysical signals within the sarcomere that drive diastolic dysfunction, impacting coronary flow dynamics, defective arteriogenesis and fibrosis. Changes in mechano-transduction signaling between the different cellular compartments contribute to the pathogenesis of HCM.
肥厚型心肌病(HCM)是一种主要由肌节蛋白突变引起的心血管遗传病。对于适应不良的肌节生物物理信号如何转导至细胞内和细胞外区室从而导致HCM进展,我们的认识还存在空白。为了研究HCM的早期进展,我们聚焦于新生发育过程中肌丝功能障碍的起始阶段,并检测了携带细肌丝HCM突变的小鼠的心脏动力学、冠状血管结构和功能以及机械转导信号。我们使用皮肤纤维力学、超声心动图、生物化学、组织学和免疫组织化学方法,研究了转基因(TG)TG-cTnT-R92Q小鼠和非转基因(NTG)小鼠出生后第7至28天(P7-P28)的情况。在P7时,皮肤肌纤维束表现出钙敏感性增加(pCa TG:5.97±0.04,NTG:5.84±0.01),这是由于在慢骨骼肌(胎儿)肌钙蛋白I和α/β肌球蛋白重链同工型表达的背景下cTnT-R92Q的表达所致。尽管在P7-P14期间向成年同工型表达发生了转变,但钙敏感性增加一直持续到P28,TG和NTG心脏的大体形态没有明显差异。在P7时,明显的舒张功能障碍伴随着冠状动脉血流紊乱(平均舒张速度,TG:222.5±18.81毫米/秒,NTG:338.7±28.07毫米/秒)以及局部纤维化(TG:4.36%±0.44%,NTG:2.53%±0.47%)。肌浆网钙转运蛋白(PLN)磷酸化增加也很明显,表明钙稳态存在异常。到P14时,小动脉横截面积减小,纤维化范围扩大(TG:9.72%±0.73%,NTG:2.72%±0.2%)。在比较冠状动脉中的机械转导信号时,我们发现TG心脏在P14时内皮Yes相关蛋白(YAP)表达增加,其核/胞质比降低,而在P28时这种情况发生了逆转。我们得出结论,那些预示HCM肥厚性重塑的早期机制包括肌节内有缺陷的生物物理信号,这些信号驱动舒张功能障碍,影响冠状动脉血流动力学、动脉生成缺陷和纤维化。不同细胞区室之间机械转导信号的变化有助于HCM的发病机制。