Ning Jing, Xia Maoyang, Wang Dong, Feng Xin, Zhou Hong, Zhang Jincheng, Hao Yue
The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, People's Republic of China.
Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an, 710071, People's Republic of China.
Nanomicro Lett. 2020 Oct 27;13(1):2. doi: 10.1007/s40820-020-00527-w.
Recent developments in the synthesis of graphene-based structures focus on continuous improvement of porous nanostructures, doping of thin films, and mechanisms for the construction of three-dimensional architectures. Herein, we synthesize creeper-like NiSi/NiOOH/graphene nanostructures via low-pressure all-solid melting-reconstruction chemical vapor deposition. In a carbon-rich atmosphere, high-energy atoms bombard the Ni and Si surface, and reduce the free energy in the thermodynamic equilibrium of solid Ni-Si particles, considerably catalyzing the growth of Ni-Si nanocrystals. By controlling the carbon source content, a NiSi single crystal with high crystallinity and good homogeneity is stably synthesized. Electrochemical measurements indicate that the nanostructures exhibit an ultrahigh specific capacity of 835.3 C g (1193.28 F g) at 1 A g; when integrated as an all-solid-state supercapacitor, it provides a remarkable energy density as high as 25.9 Wh kg at 750 W kg, which can be attributed to the free-standing NiSi/graphene skeleton providing a large specific area and NiOOH inhibits insulation on the electrode surface in an alkaline solution, thereby accelerating the electron exchange rate. The growth of the high-performance composite nanostructure is simple and controllable, enabling the large-scale production and application of microenergy storage devices.
基于石墨烯结构的合成方面的最新进展集中在多孔纳米结构的持续改进、薄膜的掺杂以及三维结构构建的机制上。在此,我们通过低压全固态熔融重构化学气相沉积法合成了爬行者状的NiSi/NiOOH/石墨烯纳米结构。在富碳气氛中,高能原子轰击Ni和Si表面,并降低了固态Ni-Si颗粒热力学平衡中的自由能,极大地催化了Ni-Si纳米晶体的生长。通过控制碳源含量,稳定地合成了具有高结晶度和良好均匀性的NiSi单晶。电化学测量表明,该纳米结构在1 A g下表现出835.3 C g(1193.28 F g)的超高比容量;当集成作为全固态超级电容器时,在750 W kg下它提供高达25.9 Wh kg的显著能量密度,这可归因于自立式NiSi/石墨烯骨架提供了大比表面积,并且NiOOH抑制了碱性溶液中电极表面的绝缘,从而加速了电子交换速率。高性能复合纳米结构的生长简单且可控,使得微能量存储装置能够大规模生产和应用。