Suppr超能文献

深度学习能够在全国范围内实现基于图像的树木计数、树冠分割和高度预测。

Deep learning enables image-based tree counting, crown segmentation, and height prediction at national scale.

作者信息

Li Sizhuo, Brandt Martin, Fensholt Rasmus, Kariryaa Ankit, Igel Christian, Gieseke Fabian, Nord-Larsen Thomas, Oehmcke Stefan, Carlsen Ask Holm, Junttila Samuli, Tong Xiaoye, d'Aspremont Alexandre, Ciais Philippe

机构信息

Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen 1350, Denmark.

Département Sciences de la terre et de l'univers, espace, Université Paris-Saclay, Gif-sur-Yvette 91190, France.

出版信息

PNAS Nexus. 2023 Mar 9;2(4):pgad076. doi: 10.1093/pnasnexus/pgad076. eCollection 2023 Apr.

Abstract

Sustainable tree resource management is the key to mitigating climate warming, fostering a green economy, and protecting valuable habitats. Detailed knowledge about tree resources is a prerequisite for such management but is conventionally based on plot-scale data, which often neglects trees outside forests. Here, we present a deep learning-based framework that provides location, crown area, and height for individual overstory trees from aerial images at country scale. We apply the framework on data covering Denmark and show that large trees (stem diameter >10 cm) can be identified with a low bias (12.5%) and that trees outside forests contribute to 30% of the total tree cover, which is typically unrecognized in national inventories. The bias is high (46.6%) when our results are evaluated against all trees taller than 1.3 m, which involve undetectable small or understory trees. Furthermore, we demonstrate that only marginal effort is needed to transfer our framework to data from Finland, despite markedly dissimilar data sources. Our work lays the foundation for digitalized national databases, where large trees are spatially traceable and manageable.

摘要

可持续的树木资源管理是缓解气候变暖、促进绿色经济和保护宝贵栖息地的关键。关于树木资源的详细知识是这种管理的先决条件,但传统上是基于样地尺度的数据,而这些数据往往忽略了森林之外的树木。在此,我们提出了一个基于深度学习的框架,该框架可从国家尺度的航空图像中提供单株上层树木的位置、树冠面积和高度。我们将该框架应用于覆盖丹麦的数据,并表明大树(树干直径>10厘米)能够以较低偏差(12.5%)被识别出来,而且森林之外的树木占总树木覆盖面积的30%,这在国家清查中通常未被识别。当我们的结果针对所有高于1.3米的树木进行评估时,偏差较高(46.6%),这其中包括难以检测到的小树或下层树木。此外,我们证明,尽管数据源明显不同,但只需付出少量努力就能将我们的框架应用于来自芬兰的数据。我们的工作为数字化国家数据库奠定了基础,在该数据库中大树在空间上是可追踪和可管理的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a09a/10096914/0b7683fb82ea/pgad076f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验