Lee Sangjun, Shirinpour Sina, Alekseichuk Ivan, Perera Nipun, Linn Gary, Schroeder Charles E, Falchier Arnaud Y, Opitz Alexander
bioRxiv. 2023 Apr 8:2023.04.07.536090. doi: 10.1101/2023.04.07.536090.
Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. Neural oscillations exhibit phase-dependent associations with cognitive functions, and tools to manipulate local oscillatory phases can affect communication across remote brain regions. A recent study demonstrated that multi-channel tACS can generate electric fields with a phase gradient or traveling waves in the brain. Computational simulations using phasor algebra can predict the phase distribution inside the brain and aid in informing parameters in tACS experiments. However, experimental validation of computational models for multi-phase tACS is still lacking. Here, we develop such a framework for phasor simulation and evaluate its accuracy using recordings in nonhuman primates. We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models. Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues’ conductivity. Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.
经颅交流电刺激(tACS)是一种广泛应用的非侵入性脑刺激(NIBS)技术,用于影响神经活动。神经振荡表现出与认知功能的相位依赖性关联,而操纵局部振荡相位的工具可以影响远程脑区之间的通信。最近的一项研究表明,多通道tACS可以在大脑中产生具有相位梯度或行波的电场。使用相量代数的计算模拟可以预测大脑内部的相位分布,并有助于为tACS实验提供参数信息。然而,多相tACS计算模型的实验验证仍然缺乏。在这里,我们开发了这样一个相量模拟框架,并使用非人类灵长类动物的记录来评估其准确性。我们从两只猴子在多通道tACS期间的颅内记录中提取电场的相位和幅度,并将它们与使用有限元模型通过相量分析计算得到的结果进行比较。我们的研究结果表明,模拟相位与测量相位吻合良好(r = 0.9)。此外,我们系统地评估了精确电极放置对建模和数据一致性的影响。最后,我们的框架可以在给定校准组织电导率的情况下预测测量中的幅度分布。我们经过验证的用于模拟多相、多电极tACS的通用框架为多通道tACS实验的原则性规划提供了一个简化工具。