Suppr超能文献

在体内和体外通过多通道经颅交流电刺激进行相位分布预测。

Predicting the phase distribution during multi-channel transcranial alternating current stimulation in silico and in vivo.

机构信息

Department of Biomedical Engineering, University of Minnesota, MN, USA.

Department of Biomedical Engineering, University of Minnesota, MN, USA.

出版信息

Comput Biol Med. 2023 Nov;166:107516. doi: 10.1016/j.compbiomed.2023.107516. Epub 2023 Sep 20.

Abstract

BACKGROUND

Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. TACS experiments have been coupled with computational simulations to predict the electromagnetic fields within the brain. However, existing simulations are focused on the magnitude of the field. As the possibility of inducing the phase gradient in the brain using multiple tACS electrodes arises, a simulation framework is necessary to investigate and predict the phase gradient of electric fields during multi-channel tACS.

OBJECTIVE

Here, we develop such a framework for phasor simulation using phasor algebra and evaluate its accuracy using in vivo recordings in monkeys.

METHODS

We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models.

RESULTS

Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues' conductivity.

CONCLUSIONS

Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.

摘要

背景

经颅交流电刺激(tACS)是一种广泛应用的非侵入性脑刺激(NIBS)技术,可影响神经活动。tACS 实验已与计算模拟相结合,以预测大脑内的电磁场。然而,现有的模拟主要集中在场的幅度上。由于使用多个 tACS 电极产生脑内相位梯度的可能性出现,因此需要一个模拟框架来研究和预测多通道 tACS 期间电场的相位梯度。

目的

本文使用相量代数开发了这样一种相量模拟框架,并使用猴子体内记录进行评估。

方法

我们从两只猴子在多通道 tACS 期间的颅内记录中提取电场的相位和幅度,并将其与使用有限元模型进行的相量分析计算结果进行比较。

结果

我们的发现表明,模拟相位与测量相位吻合良好(r=0.9)。此外,我们系统地评估了准确放置电极对建模和数据一致性的影响。最后,我们的框架可以根据校准的组织电导率预测测量中的幅度分布。

结论

我们验证的用于模拟多相、多电极 tACS 的通用框架为多通道 tACS 实验的原则性规划提供了一个简化的工具。

相似文献

1
Predicting the phase distribution during multi-channel transcranial alternating current stimulation in silico and in vivo.
Comput Biol Med. 2023 Nov;166:107516. doi: 10.1016/j.compbiomed.2023.107516. Epub 2023 Sep 20.
3
Electric field dynamics in the brain during multi-electrode transcranial electric stimulation.
Nat Commun. 2019 Jun 12;10(1):2573. doi: 10.1038/s41467-019-10581-7.
4
Prospects for transcranial temporal interference stimulation in humans: A computational study.
Neuroimage. 2019 Nov 15;202:116124. doi: 10.1016/j.neuroimage.2019.116124. Epub 2019 Aug 29.
6
Targeting alpha-band oscillations in a cortical model with amplitude-modulated high-frequency transcranial electric stimulation.
Neuroimage. 2018 Jun;173:3-12. doi: 10.1016/j.neuroimage.2018.02.005. Epub 2018 Feb 7.
8
How to target inter-regional phase synchronization with dual-site Transcranial Alternating Current Stimulation.
Neuroimage. 2017 Dec;163:68-80. doi: 10.1016/j.neuroimage.2017.09.024. Epub 2017 Sep 15.
9
Imaging of current flow in the human head during transcranial electrical therapy.
Brain Stimul. 2017 Jul-Aug;10(4):764-772. doi: 10.1016/j.brs.2017.04.125. Epub 2017 Apr 20.
10
Phase-specific manipulation of rhythmic brain activity by transcranial alternating current stimulation.
Brain Stimul. 2020 Sep-Oct;13(5):1254-1262. doi: 10.1016/j.brs.2020.06.008. Epub 2020 Jun 10.

引用本文的文献

1
Layers of the monkey visual cortex are selectively modulated during electrical stimulation.
PLoS Biol. 2025 Jul 7;23(7):e3003278. doi: 10.1371/journal.pbio.3003278. eCollection 2025 Jul.
2
Modulation of motor excitability reflects traveling waves of neural oscillations.
Cell Rep. 2025 Jun 24;44(6):115864. doi: 10.1016/j.celrep.2025.115864. Epub 2025 Jun 14.
3
Quasistatic approximation in neuromodulation.
J Neural Eng. 2024 Jul 24;21(4). doi: 10.1088/1741-2552/ad625e.

本文引用的文献

2
Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation.
Trends Cogn Sci. 2023 Feb;27(2):189-205. doi: 10.1016/j.tics.2022.11.013. Epub 2022 Dec 19.
3
Accuracy and precision of navigated transcranial magnetic stimulation.
J Neural Eng. 2022 Dec 16;19(6). doi: 10.1088/1741-2552/aca71a.
4
A minimum effective dose for (transcranial) alternating current stimulation.
Brain Stimul. 2022 Sep-Oct;15(5):1221-1222. doi: 10.1016/j.brs.2022.08.018. Epub 2022 Aug 28.
5
A parsimonious description of global functional brain organization in three spatiotemporal patterns.
Nat Neurosci. 2022 Aug;25(8):1093-1103. doi: 10.1038/s41593-022-01118-1. Epub 2022 Jul 28.
8
Modeling implanted metals in electrical stimulation applications.
J Neural Eng. 2022 Mar 8;19(2). doi: 10.1088/1741-2552/ac55ae.
9
Personalized brain stimulation for effective neurointervention across participants.
PLoS Comput Biol. 2021 Sep 9;17(9):e1008886. doi: 10.1371/journal.pcbi.1008886. eCollection 2021 Sep.
10
Driving motor cortex oscillations modulates bradykinesia in Parkinson's disease.
Brain. 2022 Mar 29;145(1):224-236. doi: 10.1093/brain/awab257.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验