Suppr超能文献

一种基于CsPbBr的用于触觉传感神经形态计算的数模双模忆阻器。

A Digital-Analog Bimodal Memristor Based on CsPbBr for Tactile Sensory Neuromorphic Computing.

作者信息

Chen Delu, Zhi Xinrong, Xia Yifan, Li Shuhan, Xi Benbo, Zhao Chun, Wang Xin

机构信息

Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China.

School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China.

出版信息

Small. 2023 Sep;19(36):e2301196. doi: 10.1002/smll.202301196. Epub 2023 Apr 17.

Abstract

Memristor with digital and analog bipolar bimodal resistive switching offers a promising opportunity for the information-processing component. However, it still remains a huge challenge that the memristor enables bimodal digital and analog types and fabrication of artificial sensory neural network system. Here, a proposed CsPbBr -based memristor demonstrates a high ON/OFF ratio (>10 ), long retention (>10 s), stable endurance (100 cycles), and multilevel resistance memory, which acts as an artificial synapse to realize fundamental biological synaptic functions and neuromorphic computing based on controllable resistance modulation. Moreover, a 5 × 5 spinosum-structured piezoresistive sensor array (sensitivity of 22.4 kPa , durability of 1.5 × 10 cycles, and fast response time of 2.43 ms) is constructed as a tactile sensory receptor to transform mechanical stimuli into electrical signals, which can be further processed by the CsPbBr -based memristor with synaptic plasticity. More importantly, this artificial sensory neural network system combined the artificial synapse with 5 × 5 tactile sensing array based on piezoresistive sensors can recognize the handwritten patterns of different letters with high accuracy of 94.44% under assistance of supervised learning. Consequently, the digital-analog bimodal memristor would demonstrate potential application in human-machine interaction, prosthetics, and artificial intelligence.

摘要

具有数字和模拟双极双峰电阻切换功能的忆阻器为信息处理组件提供了一个很有前景的机会。然而,忆阻器实现双峰数字和模拟类型以及制造人工感觉神经网络系统仍然是一个巨大的挑战。在此,一种基于CsPbBr的忆阻器表现出高开关比(>10)、长保持时间(>10秒)、稳定的耐久性(100次循环)和多级电阻记忆,其作为人工突触以基于可控电阻调制实现基本的生物突触功能和神经形态计算。此外,构建了一个5×5的棘状结构压阻传感器阵列(灵敏度为22.4 kPa,耐久性为1.5×10次循环,快速响应时间为2.43毫秒)作为触觉感觉受体,将机械刺激转化为电信号,该电信号可由具有突触可塑性的基于CsPbBr的忆阻器进一步处理。更重要的是,这种将人工突触与基于压阻传感器的5×5触觉传感阵列相结合的人工感觉神经网络系统,在监督学习的辅助下,能够以94.44%的高精度识别不同字母的手写图案。因此,数字 - 模拟双峰忆阻器将在人机交互、假肢和人工智能方面展示出潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验