IEEE J Biomed Health Inform. 2023 Jun;27(6):2625-2634. doi: 10.1109/JBHI.2023.3267521. Epub 2023 Jun 5.
Neonates admitted to neonatal intensive care units (NICUs) are at risk for respiratory decompensation and may require endotracheal intubation. Delayed intubation is associated with increased morbidity and mortality, particularly in urgent unplanned intubation. By accurately predicting the need for intubation in real-time, additional time can be made available for preparation, thereby increasing the safety margins by avoiding high-risk late intubation. In this study, the probability of intubation in neonatal patients with respiratory problems was predicted using a deep neural network. A multimodal transformer model was developed to simultaneously analyze time-series data (1-3 h of vital signs and Fi[Formula: see text] setting value) and numeric data including initial clinical information. Over a dataset including information of 128 neonatal patients who underwent noninvasive ventilation, the proposed model successfully predicted the need for intubation 3 h in advance (area under the receiver operator characteristic curve = 0.880 ± 0.051, F1-score = 0.864 ± 0.031, sensitivity = 0.886 ± 0.041, specificity = 0.849 ± 0.035, and accuracy = 0.857 ± 0.032). Moreover, the proposed model showed high generalization ability by achieving AUROC 0.890, F1-score 0.893, specificity 0.871, sensitivity 0.745, and accuracy 0.864 with an additional 91 dataset for testing.
新生儿重症监护病房(NICU)收治的新生儿有呼吸失代偿的风险,可能需要气管插管。延迟插管与发病率和死亡率增加有关,尤其是在紧急非计划性插管时。通过实时准确预测插管需求,可以为准备工作留出更多时间,从而通过避免高危迟发性插管来增加安全裕度。在这项研究中,使用深度神经网络预测有呼吸问题的新生儿患者的插管概率。开发了一种多模态变压器模型,以同时分析时间序列数据(生命体征的 1-3 小时和 Fi[Formula: see text]设定值)和包括初始临床信息的数值数据。在包括 128 名接受无创通气的新生儿患者信息的数据集上,所提出的模型成功地提前 3 小时预测了插管需求(接受者操作特征曲线下面积=0.880±0.051,F1 分数=0.864±0.031,灵敏度=0.886±0.041,特异性=0.849±0.035,准确性=0.857±0.032)。此外,通过在另外 91 个测试数据集上实现 AUROC 0.890、F1 分数 0.893、特异性 0.871、灵敏度 0.745 和准确性 0.864,该模型表现出了很高的泛化能力。