Biomedical Engineering, Chungbuk National University Hospital, Cheongju, Republic of Korea.
Department of Pediatrics, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea.
Sci Rep. 2023 Apr 17;13(1):6213. doi: 10.1038/s41598-023-33353-2.
Respiratory distress is a common chief complaint in neonates admitted to the neonatal intensive care unit. Despite the increasing use of non-invasive ventilation in neonates with respiratory difficulty, some of them require advanced airway support. Delayed intubation is associated with increased morbidity, particularly in urgent unplanned cases. Early and accurate prediction of the need for intubation may provide more time for preparation and increase safety margins by avoiding the late intubation at high-risk infants. This study aimed to predict the need for intubation within 3 h in neonates initially managed with non-invasive ventilation for respiratory distress during the first 48 h of life using a multimodal deep neural network. We developed a multimodal deep neural network model to simultaneously analyze four time-series data collected at 1-h intervals and 19 variables including demographic, physiological and laboratory parameters. Evaluating the dataset of 128 neonates with respiratory distress who underwent non-invasive ventilation, our model achieved an area under the curve of 0.917, sensitivity of 85.2%, and specificity of 89.2%. These findings demonstrate promising results for the multimodal model in predicting neonatal intubation within 3 h.
呼吸窘迫是新生儿重症监护病房收治的新生儿常见的主要主诉。尽管越来越多地将无创通气应用于有呼吸困难的新生儿,但其中一些仍需要高级气道支持。延迟插管与发病率增加相关,尤其是在紧急非计划情况下。早期准确预测插管需求可能为准备工作提供更多时间,并通过避免高危婴儿晚期插管来增加安全裕度。本研究旨在使用多模态深度神经网络预测最初接受无创通气治疗的新生儿在生命最初 48 小时内发生呼吸窘迫时,在 3 小时内需要插管。我们开发了一个多模态深度神经网络模型,同时分析每 1 小时收集的四个时间序列数据和包括人口统计学、生理学和实验室参数在内的 19 个变量。评估了 128 名接受无创通气治疗的呼吸窘迫新生儿的数据集,我们的模型获得了 0.917 的曲线下面积、85.2%的敏感性和 89.2%的特异性。这些发现表明,多模态模型在预测新生儿 3 小时内插管方面具有有前景的结果。