文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

方法学发展研究:用于老年重症监护病房患者机械通气的动态掩码注意力图神经网络

Methodological development study: Dynamic mask attention graph neural network for mechanical ventilation in elderly intensive care unit patients.

作者信息

Xie Yi, Xie Ni, Guo Jiao

机构信息

Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'An, China.

Faculty of Business, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.

出版信息

Digit Health. 2025 Jul 30;11:20552076251361680. doi: 10.1177/20552076251361680. eCollection 2025 Jan-Dec.


DOI:10.1177/20552076251361680
PMID:40755963
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12317266/
Abstract

OBJECTIVE: With the intensifying global population aging, the demand for mechanical ventilation in geriatric patients is rising. Given their complex physiological traits and sparse intensive care unit (ICU) data, accurate intubation prediction is difficult. Premature intubation may raise the risk of hypoxic organ damage, whereas delayed intubation can lead to increased ventilator-associated mortality. Therefore, developing precise intubation prediction models is vital for elderly ICU patients. METHODS: This study retrospectively analyzed data from ICU patients aged over 65 years in the MIMIC-IV and eICU databases. The intubation prediction task was formulated using a sliding window with a strict temporal data split to avoid data leakage. We propose a dynamic mask attention graph neural network (DymaGNN) to capture the time-varying relationship of key physiological variables by constructing a dynamic heterogeneous graph structure and an adaptive edge-weighting mechanism. The mask attention layer is designed to identify the key timesteps in the irregular sampling data. RESULTS: The experiments showed that DymaGNN achieved an area under the curve (AUC) value of 0.8363 and 0.8557 on the intubation prediction task on MIMIC-IV and eICU datasets, respectively, and maintained an AUC of 0.8115 under a 15% data missing rate. Visualization of the feature interaction graph revealed the relationship between important features such as respiratory rate and oxygen saturation. These interaction patterns matched much clinical knowledge, significantly improving doctors' trust in the model prediction. CONCLUSION: Our proposed DymaGNN establishes a useful method for mechanical ventilation prediction in elderly ICU patients, achieving high predictive accuracy and remaining robust under a 10% data missing rate. Its interpretable feature interaction graphs provide transparent insights, aligning with established medical knowledge to build trustworthy tools for real-world ICU intubation decisions.

摘要

目的:随着全球人口老龄化加剧,老年患者对机械通气的需求不断上升。鉴于其复杂的生理特征以及重症监护病房(ICU)数据稀少,准确的插管预测较为困难。过早插管可能会增加缺氧性器官损伤的风险,而延迟插管则可能导致呼吸机相关性死亡率上升。因此,开发精确的插管预测模型对老年ICU患者至关重要。 方法:本研究回顾性分析了MIMIC-IV和eICU数据库中65岁以上ICU患者的数据。插管预测任务采用滑动窗口制定,并进行严格的时间数据分割以避免数据泄露。我们提出了一种动态掩码注意力图神经网络(DymaGNN),通过构建动态异构图结构和自适应边加权机制来捕捉关键生理变量的时变关系。掩码注意力层旨在识别不规则采样数据中的关键时间步长。 结果:实验表明,DymaGNN在MIMIC-IV和eICU数据集上的插管预测任务中,曲线下面积(AUC)值分别达到0.8363和0.8557,并且在数据缺失率为15%的情况下,AUC仍保持在0.8115。特征交互图的可视化揭示了呼吸频率和血氧饱和度等重要特征之间的关系。这些交互模式与许多临床知识相匹配,显著提高了医生对模型预测的信任度。 结论:我们提出的DymaGNN为老年ICU患者的机械通气预测建立了一种有用的方法,具有较高的预测准确性,并且在数据缺失率为10%的情况下仍保持稳健。其可解释的特征交互图提供了透明的见解,与既定医学知识相一致,可以为现实世界中的ICU插管决策构建值得信赖的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/5c93889014e1/10.1177_20552076251361680-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/5f24fb68d058/10.1177_20552076251361680-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/12772c6dbc86/10.1177_20552076251361680-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/5a5866d5c97c/10.1177_20552076251361680-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/821941bbd9be/10.1177_20552076251361680-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/c37c7fad0f72/10.1177_20552076251361680-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/5c93889014e1/10.1177_20552076251361680-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/5f24fb68d058/10.1177_20552076251361680-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/12772c6dbc86/10.1177_20552076251361680-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/5a5866d5c97c/10.1177_20552076251361680-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/821941bbd9be/10.1177_20552076251361680-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/c37c7fad0f72/10.1177_20552076251361680-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d597/12317266/5c93889014e1/10.1177_20552076251361680-fig6.jpg

相似文献

[1]
Methodological development study: Dynamic mask attention graph neural network for mechanical ventilation in elderly intensive care unit patients.

Digit Health. 2025-7-30

[2]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[3]
Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) for the diagnosis of delirium in adults in critical care settings.

Cochrane Database Syst Rev. 2023-11-21

[4]
Systemic Inflammatory Response Syndrome

2025-1

[5]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[6]
Extracorporeal carbon dioxide removal for the treatment of acute hypoxaemic respiratory failure: the REST RCT.

Health Technol Assess. 2025-7

[7]
Magnesium sulfate for acute exacerbations of chronic obstructive pulmonary disease.

Cochrane Database Syst Rev. 2022-5-26

[8]
Ventilator Management

2025-1

[9]
Factors that impact on the use of mechanical ventilation weaning protocols in critically ill adults and children: a qualitative evidence-synthesis.

Cochrane Database Syst Rev. 2016-10-4

[10]
Supraglottic airway devices versus tracheal intubation for airway management during general anaesthesia in obese patients.

Cochrane Database Syst Rev. 2013-9-9

本文引用的文献

[1]
Using machine learning techniques for early prediction of tracheal intubation in patients with septic shock: a multi-center study in South Korea.

Acute Crit Care. 2025-5

[2]
CRISP: A causal relationships-guided deep learning framework for advanced ICU mortality prediction.

BMC Med Inform Decis Mak. 2025-4-15

[3]
Beyond perfection: why imperfect routinely collected intensive care data still hold value.

Intensive Care Med. 2025-4

[4]
Improving Prediction of Need for Mechanical Ventilation using Cross-Attention.

Annu Int Conf IEEE Eng Med Biol Soc. 2024-7

[5]
Ethical and Bias Considerations in Artificial Intelligence/Machine Learning.

Mod Pathol. 2025-3

[6]
An enhanced machine learning-based prognostic prediction model for patients with AECOPD on invasive mechanical ventilation.

iScience. 2024-10-23

[7]
Recommendations to Ensure Safety of AI in Real-World Clinical Care.

JAMA. 2025-2-11

[8]
Multitask learning to predict successful weaning in critically ill ventilated patients: A retrospective analysis of the MIMIC-IV database.

Digit Health. 2024-10-8

[9]
Clinical decision support systems for 3-month mortality in elderly patients admitted to ICU with ischemic stroke using interpretable machine learning.

Digit Health. 2024-9-17

[10]
Non-invasive respiratory support in elderly hospitalized patients.

Expert Rev Respir Med. 2024-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索