Suppr超能文献

通过 CPS-merge 分析的多角度聚类及其在多模态单细胞数据中的应用。

Multi-view clustering by CPS-merge analysis with application to multimodal single-cell data.

机构信息

Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, United States of America.

Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America.

出版信息

PLoS Comput Biol. 2023 Apr 17;19(4):e1011044. doi: 10.1371/journal.pcbi.1011044. eCollection 2023 Apr.

Abstract

Multi-view data can be generated from diverse sources, by different technologies, and in multiple modalities. In various fields, integrating information from multi-view data has pushed the frontier of discovery. In this paper, we develop a new approach for multi-view clustering, which overcomes the limitations of existing methods such as the need of pooling data across views, restrictions on the clustering algorithms allowed within each view, and the disregard for complementary information between views. Our new method, called CPS-merge analysis, merges clusters formed by the Cartesian product of single-view cluster labels, guided by the principle of maximizing clustering stability as evaluated by CPS analysis. In addition, we introduce measures to quantify the contribution of each view to the formation of any cluster. CPS-merge analysis can be easily incorporated into an existing clustering pipeline because it only requires single-view cluster labels instead of the original data. We can thus readily apply advanced single-view clustering algorithms. Importantly, our approach accounts for both consensus and complementary effects between different views, whereas existing ensemble methods focus on finding a consensus for multiple clustering results, implying that results from different views are variations of one clustering structure. Through experiments on single-cell datasets, we demonstrate that our approach frequently outperforms other state-of-the-art methods.

摘要

多视图数据可以由不同的来源、不同的技术和多种模式生成。在各个领域,整合多视图数据的信息已经推动了发现的前沿。在本文中,我们开发了一种新的多视图聚类方法,克服了现有方法的局限性,例如需要跨视图汇集数据、允许在每个视图中使用的聚类算法受限以及忽略视图之间的互补信息。我们的新方法称为 CPS-merge 分析,它通过 CPS 分析评估的聚类稳定性最大化原则,合并由单视图聚类标签的笛卡尔积形成的簇。此外,我们引入了一些措施来量化每个视图对任何簇形成的贡献。CPS-merge 分析可以很容易地集成到现有的聚类管道中,因为它只需要单视图聚类标签,而不需要原始数据。因此,我们可以轻松应用先进的单视图聚类算法。重要的是,我们的方法考虑了不同视图之间的一致性和互补效应,而现有的集成方法则侧重于为多个聚类结果找到共识,这意味着来自不同视图的结果是一种聚类结构的变体。通过对单细胞数据集的实验,我们证明了我们的方法经常优于其他最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a427/10138214/801104d5434b/pcbi.1011044.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验