Suppr超能文献

单细胞多组学数据的总变分联合概率建模。

Joint probabilistic modeling of single-cell multi-omic data with totalVI.

机构信息

Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.

Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.

出版信息

Nat Methods. 2021 Mar;18(3):272-282. doi: 10.1038/s41592-020-01050-x. Epub 2021 Feb 15.

Abstract

The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI's performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing.

摘要

单细胞转录组和表位测序(CITE-seq)中同时测量 RNA 和表面蛋白,是将转录组变异与细胞表型和功能联系起来的一种很有前途的方法。然而,由于每种测量方法都具有独特的技术特点,因此将这些配对的观点结合起来,形成细胞状态的统一表示形式具有挑战性。本文介绍了总变分推断(totalVI;https://scvi-tools.org ),这是一种用于 CITE-seq 数据端到端联合分析的框架,它将数据概率地表示为生物和技术因素的组合,包括蛋白质背景和批次效应。为了评估 totalVI 的性能,我们用 CITE-seq 对来自小鼠脾脏和淋巴结的免疫细胞进行了分析,共测量了 100 多种表面蛋白。结果表明,totalVI 为常见的分析任务提供了一个有凝聚力的解决方案,例如降维、整合具有不同测量蛋白的数据集、估计分子之间的相关性以及差异表达测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6409/7954949/df6a8688db5a/nihms-1656427-f0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验