Suppr超能文献

基于深度学习的胃肠道间质瘤筛查系统可识别多种软组织肿瘤。

A Deep Learning-Based System Trained for Gastrointestinal Stromal Tumor Screening Can Identify Multiple Types of Soft Tissue Tumors.

机构信息

Beijing University of Posts and Telecommunications and Department of Pathology, Peking University Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Beijing University of Posts and Telecommunications and Department of Pathology, Peking University Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Beijing Key Laboratory of Network System and Network Culture, Beijing, China.

出版信息

Am J Pathol. 2023 Jul;193(7):899-912. doi: 10.1016/j.ajpath.2023.03.012. Epub 2023 Apr 15.

Abstract

The accuracy and timeliness of the pathologic diagnosis of soft tissue tumors (STTs) critically affect treatment decision and patient prognosis. Thus, it is crucial to make a preliminary judgement on whether the tumor is benign or malignant with hematoxylin and eosin-stained images. A deep learning-based system, Soft Tissue Tumor Box (STT-BOX), is presented herein, with only hematoxylin and eosin images for malignant STT identification from benign STTs with histopathologic similarity. STT-BOX assumed gastrointestinal stromal tumor as a baseline for malignant STT evaluation, and distinguished gastrointestinal stromal tumor from leiomyoma and schwannoma with 100% area under the curve in patients from three hospitals, which achieved higher accuracy than the interpretation of experienced pathologists. Particularly, this system performed well on six common types of malignant STTs from The Cancer Genome Atlas data set, accurately highlighting the malignant mass lesion. STT-BOX was able to distinguish ovarian malignant sex-cord stromal tumors without any fine-tuning. This study included mesenchymal tumors that originated from the digestive system, bone and soft tissues, and reproductive system, where the high accuracy of migration verification may reveal the morphologic similarity of the nine types of malignant tumors. Further evaluation in a pan-STT setting would be potential and prospective, obviating the overuse of immunohistochemistry and molecular tests, and providing a practical basis for clinical treatment selection in a timely manner.

摘要

软组织肿瘤(STT)的病理诊断准确性和及时性对治疗决策和患者预后有重要影响。因此,用苏木精和伊红染色图像对肿瘤是良性还是恶性进行初步判断至关重要。本文提出了一种基于深度学习的系统——软组织肿瘤盒(STT-BOX),仅使用苏木精和伊红图像即可从具有组织病理学相似性的良性 STT 中识别恶性 STT。STT-BOX 假设胃肠道间质瘤为恶性 STT 评估的基线,并在来自三家医院的患者中以 100%的曲线下面积区分胃肠道间质瘤与平滑肌瘤和神经鞘瘤,其准确性高于经验丰富的病理学家的解释。特别是,该系统在来自癌症基因组图谱数据集的六种常见类型的恶性 STT 上表现良好,准确地突出了恶性肿块病变。STT-BOX 无需任何微调即可区分卵巢恶性性索间质肿瘤。本研究包括起源于消化系统、骨骼和软组织以及生殖系统的间叶肿瘤,迁移验证的高准确性可能揭示了九种恶性肿瘤的形态相似性。在更广泛的 STT 范围内进行进一步评估可能具有潜力和前景,可以避免过度使用免疫组织化学和分子检测,并为及时进行临床治疗选择提供实际依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验