文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有免疫调节功能的相转变纳米液滴增强温和磁热疗抑制肿瘤增殖和转移。

Phase-transition nanodroplets with immunomodulatory capabilities for potentiating mild magnetic hyperthermia to inhibit tumour proliferation and metastasis.

机构信息

Department of Ultrasound, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.

出版信息

J Nanobiotechnology. 2023 Apr 17;21(1):131. doi: 10.1186/s12951-023-01885-4.


DOI:10.1186/s12951-023-01885-4
PMID:37069614
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10108485/
Abstract

BACKGROUND: Magnetic hyperthermia (MHT)-mediated thermal ablation therapy has promising clinical applications in destroying primary tumours. However, traditional MHT still presents the challenges of damage to normal tissues adjacent to the treatment site and the destruction of tumour-associated antigens due to its high onset temperature (> 50 °C). In addition, local thermal ablation of tumours often exhibits limited therapeutic inhibition of tumour metastasis. RESULTS: To address the above defects, a hybrid nanosystem (SPIOs + RPPs) was constructed in which phase transition nanodroplets with immunomodulatory capabilities were used to potentiate supermagnetic iron oxide nanoparticle (SPIO)-mediated mild MHT (< 44 °C) and further inhibit tumour proliferation and metastasis. Magnetic-thermal sensitive phase-transition nanodroplets (RPPs) were fabricated from the immune adjuvant resiquimod (R848) and the phase transition agent perfluoropentane (PFP) encapsulated in a PLGA shell. Because of the cavitation effect of microbubbles produced by RPPs, the temperature threshold of MHT could be lowered from 50℃ to approximately 44℃ with a comparable effect, enhancing the release and exposure of damage-associated molecular patterns (DAMPs). The exposure of calreticulin (CRT) on the cell membrane increased by 72.39%, and the released high-mobility group B1 (HMGB1) increased by 45.84% in vivo. Moreover, the maturation rate of dendritic cells (DCs) increased from 4.17 to 61.33%, and the infiltration of cytotoxic T lymphocytes (CTLs) increased from 10.44 to 35.68%. Under the dual action of mild MHT and immune stimulation, contralateral and lung metastasis could be significantly inhibited after treatment with the hybrid nanosystem. CONCLUSION: Our work provides a novel strategy for enhanced mild magnetic hyperthermia immunotherapy and ultrasound imaging with great clinical translation potential.

摘要

背景:磁热疗(MHT)介导的热消融治疗在破坏原发性肿瘤方面具有有前景的临床应用。然而,由于其起始温度较高(>50°C),传统的 MHT 仍然存在对治疗部位附近正常组织的损伤和肿瘤相关抗原破坏的挑战。此外,肿瘤的局部热消融往往对肿瘤转移的治疗抑制作用有限。

结果:为了解决上述缺陷,构建了一种混合纳米系统(SPIOs+RPPs),其中具有免疫调节能力的相变纳米液滴用于增强超顺磁性氧化铁纳米颗粒(SPIOs)介导的温和 MHT(<44°C),并进一步抑制肿瘤增殖和转移。磁热敏感相变纳米液滴(RPPs)由免疫佐剂瑞喹莫德(R848)和包裹在 PLGA 壳中的相变剂全氟戊烷(PFP)制成。由于 RPPs 产生的微泡的空化效应,MHT 的温度阈值可以从 50°C 降低到约 44°C,效果相当,增强了损伤相关分子模式(DAMPs)的释放和暴露。细胞膜上钙网蛋白(CRT)的暴露增加了 72.39%,体内高迁移率族蛋白 B1(HMGB1)的释放增加了 45.84%。此外,树突状细胞(DCs)的成熟率从 4.17%增加到 61.33%,细胞毒性 T 淋巴细胞(CTLs)的浸润从 10.44%增加到 35.68%。在温和 MHT 和免疫刺激的双重作用下,用混合纳米系统治疗后,对侧和肺转移可以得到显著抑制。

结论:我们的工作为增强温和的磁热免疫治疗和超声成像提供了一种新的策略,具有很大的临床转化潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/e12a733aef58/12951_2023_1885_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/4f612d50f6cf/12951_2023_1885_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/ea4b0259d84b/12951_2023_1885_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/1dba9e6653f2/12951_2023_1885_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/fbbbb2422ad2/12951_2023_1885_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/1e3b87ae0acb/12951_2023_1885_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/d1206219cc6c/12951_2023_1885_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/d9bc96f5faae/12951_2023_1885_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/829087e497d5/12951_2023_1885_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/e12a733aef58/12951_2023_1885_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/4f612d50f6cf/12951_2023_1885_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/ea4b0259d84b/12951_2023_1885_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/1dba9e6653f2/12951_2023_1885_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/fbbbb2422ad2/12951_2023_1885_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/1e3b87ae0acb/12951_2023_1885_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/d1206219cc6c/12951_2023_1885_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/d9bc96f5faae/12951_2023_1885_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/829087e497d5/12951_2023_1885_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb55/10108485/e12a733aef58/12951_2023_1885_Fig9_HTML.jpg

相似文献

[1]
Phase-transition nanodroplets with immunomodulatory capabilities for potentiating mild magnetic hyperthermia to inhibit tumour proliferation and metastasis.

J Nanobiotechnology. 2023-4-17

[2]
Plasmid-loadable magnetic/ultrasound-responsive nanodroplets with a SPIO-NP dispersed perfluoropentane core and lipid shell for tumor-targeted intracellular plasmid delivery.

Biomater Sci. 2020-10-7

[3]
Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic Hyperthermia Imparts Potent Immunological Effect for Treating Cancer Metastasis.

ACS Nano. 2019-7-25

[4]
Enhancement of CD8 T-Cell-Mediated Tumor Immunotherapy via Magnetic Hyperthermia.

ChemMedChem. 2022-1-19

[5]
Mild Magnetic Hyperthermia-Activated Innate Immunity for Liver Cancer Therapy.

J Am Chem Soc. 2021-6-2

[6]
Magnetic Nanodroplets for Enhanced Deep Penetration of Solid Tumors and Simultaneous Magnetothermal-Sensitized Immunotherapy against Tumor Proliferation and Metastasis.

Adv Healthc Mater. 2022-12

[7]
Iron Nanoparticles for Low-Power Local Magnetic Hyperthermia in Combination with Immune Checkpoint Blockade for Systemic Antitumor Therapy.

Nano Lett. 2019-6-5

[8]
An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis.

Biomaterials. 2023-7

[9]
Mild magnetic hyperthermia-activated immuno-responses for primary bladder cancer therapy.

Biomaterials. 2024-6

[10]
Combined Magnetic Hyperthermia and Immune Therapy for Primary and Metastatic Tumor Treatments.

ACS Nano. 2020-1-16

引用本文的文献

[1]
Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.

Bioact Mater. 2025-7-26

[2]
Magnetic hyperthermia in oncology: Nanomaterials-driven combinatorial strategies for synergistic therapeutic gains.

Mater Today Bio. 2025-7-9

[3]
Study on the therapeutic effect and some immune factors by methotrexate modified superparamagnetic nanoparticles in rat mammary tumors.

Nanoscale Adv. 2024-11-26

[4]
The hybrid nanosystem for the identification and magnetic hyperthermia immunotherapy of metastatic sentinel lymph nodes as a multifunctional theranostic agent.

Front Bioeng Biotechnol. 2024-7-29

[5]
Nanoparticle-Mediated Synergistic Chemoimmunotherapy for Cancer Treatment.

Int J Nanomedicine. 2024

[6]
Theranostics: a multifaceted approach utilizing nano-biomaterials.

Discov Nano. 2024-2-26

[7]
Ultrasound Sonosensitizers for Tumor Sonodynamic Therapy and Imaging: A New Direction with Clinical Translation.

Molecules. 2023-9-7

[8]
New insights into nanosystems for non-small-cell lung cancer: diagnosis and treatment.

RSC Adv. 2023-6-28

本文引用的文献

[1]
NIR-II fluorescence visualization of ultrasound-induced blood-brain barrier opening for enhanced photothermal therapy against glioblastoma using indocyanine green microbubbles.

Sci Bull (Beijing). 2022-11-30

[2]
Cavitation assisted endoplasmic reticulum targeted sonodynamic droplets to enhanced anti-PD-L1 immunotherapy in pancreatic cancer.

J Nanobiotechnology. 2022-6-16

[3]
Arterial Labeling Ultrasound Subtraction Angiography (ALUSA) Based on Acoustic Phase-Change Nanodroplets.

Small. 2022-3

[4]
Elucidating the Innate Immunological Effects of Mild Magnetic Hyperthermia on U87 Human Glioblastoma Cells: An In Vitro Study.

Pharmaceutics. 2021-10-12

[5]
Heat-Confined Tumor-Docking Reversible Thermogel Potentiates Systemic Antitumor Immune Response During Near-Infrared Photothermal Ablation in Triple-Negative Breast Cancer.

Adv Healthc Mater. 2021-11

[6]
Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity.

Cancers (Basel). 2021-5-31

[7]
A Highly Efficient One-for-All Nanodroplet for Ultrasound Imaging-Guided and Cavitation-Enhanced Photothermal Therapy.

Int J Nanomedicine. 2021

[8]
Mild Magnetic Hyperthermia-Activated Innate Immunity for Liver Cancer Therapy.

J Am Chem Soc. 2021-6-2

[9]
Combination Cancer Immunotherapy of Nanoparticle-Based Immunogenic Cell Death Inducers and Immune Checkpoint Inhibitors.

Int J Nanomedicine. 2021

[10]
Detection of immunogenic cell death and its relevance for cancer therapy.

Cell Death Dis. 2020-11-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索