Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany.
German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany.
Microbiol Spectr. 2023 Jun 15;11(3):e0359222. doi: 10.1128/spectrum.03592-22. Epub 2023 Apr 18.
The envelope stress response (ESR) of Gram-negative enteric bacteria senses fluctuations in nutrient availability and environmental changes to avert damage and promote survival. It has a protective role toward antimicrobials, but direct interactions between ESR components and antibiotic resistance genes have not been demonstrated. Here, we report interactions between a central regulator of ESR , the two-component signal transduction system CpxRA (onjugative ilus epression), and the recently described mobile colistin resistance protein (MCR-1). Purified MCR-1 is specifically cleaved within its highly conserved periplasmic bridge element, which links its N-terminal transmembrane domain with the C-terminal active-site periplasmic domain, by the CpxRA-regulated serine endoprotease DegP. Recombinant strains harboring cleavage site mutations in MCR-1 are either protease resistant or degradation susceptible, with widely differing consequences for colistin resistance. Transfer of the gene encoding a degradation-susceptible mutant to strains that lack either DegP or its regulator CpxRA restores expression and colistin resistance. MCR-1 production in Escherichia coli imposes growth restriction in strains lacking either DegP or CpxRA, effects that are reversed by transactive expression of DegP. Excipient allosteric activation of the DegP protease specifically inhibits growth of isolates carrying plasmids. As CpxRA directly senses acidification, growth of strains at moderately low pH dramatically increases both MCR-1-dependent phosphoethanolamine (PEA) modification of lipid A and colistin resistance levels. Strains expressing MCR-1 are also more resistant to antimicrobial peptides and bile acids. Thus, a single residue external to its active site induces ESR activity to confer resilience in MCR-1-expressing strains to commonly encountered environmental stimuli, such as changes in acidity and antimicrobial peptides. Targeted activation of the nonessential protease DegP can lead to the elimination of transferable colistin resistance in Gram-negative bacteria. The global presence of transferable genes in a wide range of Gram-negative bacteria from clinical, veterinary, food, and aquaculture environments is disconcerting. Its success as a transmissible resistance factor remains enigmatic, because its expression imposes fitness costs and imparts only moderate levels of colistin resistance. Here, we show that MCR-1 triggers regulatory components of the envelope stress response, a system that senses fluctuations in nutrient availability and environmental changes, to promote bacterial survival in low pH environments. We identify a single residue within a highly conserved structural element of distal to its catalytic site that modulates resistance activity and triggers the ESR. Using mutational analysis, quantitative lipid A profiling and biochemical assays, we determined that growth in low pH environments dramatically increases colistin resistance levels and promotes resistance to bile acids and antimicrobial peptides. We exploited these findings to develop a targeted approach that eliminates and its plasmid carriers.
革兰氏阴性肠道细菌的信封应激反应 (ESR) 可感知营养可用性和环境变化的波动,以避免损伤并促进存活。它对抗生素具有保护作用,但 ESR 成分与抗生素耐药基因之间的直接相互作用尚未得到证明。在这里,我们报告了 ESR 的中央调节剂 CpxRA(共轭 ilus 表达)与最近描述的移动多粘菌素耐药蛋白 (MCR-1) 之间的相互作用。纯化的 MCR-1 被 CpxRA 调节的丝氨酸内切蛋白酶 DegP 在其高度保守的周质桥接元件内特异性切割,该元件将其 N 端跨膜结构域与 C 端活性位点周质结构域连接起来。含有 MCR-1 切割位点突变的重组菌株对多粘菌素的耐药性要么是蛋白酶抗性,要么是降解敏感性,其对多粘菌素耐药性的影响差异很大。将编码降解敏感性突变体的基因转移到缺乏 DegP 或其调节剂 CpxRA 的菌株中,可恢复多粘菌素的表达和耐药性。在缺乏 DegP 或 CpxRA 的菌株中,MCR-1 的产生会导致生长受限,而这种效应可以通过 DegP 的反式表达来逆转。DegP 蛋白酶的赋形剂变构激活特异性抑制携带质粒的分离株的生长。由于 CpxRA 直接感知酸化,在适度低 pH 下生长会显著增加依赖于 MCR-1 的磷酸乙醇胺 (PEA) 修饰的脂质 A 和多粘菌素耐药水平。表达 MCR-1 的菌株对抗菌肽和胆汁酸也更具耐药性。因此,活性位点之外的单个残基诱导 ESR 活性,使表达 MCR-1 的菌株对常见的环境刺激(如酸度和抗菌肽的变化)具有弹性。靶向激活非必需的蛋白酶 DegP 可以导致革兰氏阴性菌中转导性多粘菌素耐药性的消除。 广泛存在于临床、兽医、食品和水产养殖环境中的各种革兰氏阴性菌中的可转移基因令人担忧。其作为可传播的耐药因素的成功仍然是一个谜,因为其表达会带来适应性成本,并仅赋予中等水平的多粘菌素耐药性。在这里,我们表明 MCR-1 触发了信封应激反应的调节成分,该系统可感知营养可用性和环境变化的波动,以促进低 pH 环境中细菌的存活。我们确定了位于其催化位点远端的高度保守结构元件内的单个残基,该残基调节耐药活性并触发 ESR。通过突变分析、定量脂质 A 分析和生化测定,我们确定在低 pH 环境中生长会显著增加多粘菌素的耐药水平,并促进对胆汁酸和抗菌肽的耐药性。我们利用这些发现开发了一种靶向方法,可以消除 及其质粒载体。