Department of Physics, Virginia Tech, Blacksburg, VA 24061.
Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):21896-21905. doi: 10.1073/pnas.2004807117. Epub 2020 Aug 25.
Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl--glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure-property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach-combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (H NMR) spectroscopy, and molecular dynamics (MD) simulations-we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer's packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure-property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol's role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid-protein interactions.
胆固醇是真核细胞膜的基本组成部分,也是控制膜流动性、组织和其他物理化学参数的关键分子。它还通过稳定膜结构来防止结构损伤,在抗生素药物耐药性和细胞对病毒的免疫反应中发挥调节作用。虽然人们清楚地知道,从结构上看,胆固醇对流体脂质膜表现出致密化效应,但它对膜弯曲刚度的影响并非普遍存在;即胆固醇使饱和脂质膜变硬,但对富含不饱和脂质的膜(如 1,2-二油酰基-甘油-3-磷酸胆碱(DOPC))没有硬化作用。这一观察结果对结构-性质关系以及我们对胆固醇介导的生物学功能的理解提出了明确的挑战。在这里,我们使用一种综合方法——结合中子自旋回波(NSE)光谱、固态氘 NMR(H NMR)光谱和分子动力学(MD)模拟——报告胆固醇通过增加双层堆积密度,类似于饱和膜,局部增加 DOPC 膜的弯曲刚度。所有三种技术本质上都对中尺度弯曲波动敏感,与胆固醇含量增加时的有效弯曲刚度增加了两倍,胆固醇含量接近 50%摩尔分数。我们的观察结果与胆固醇对面积压缩模量和膜结构的已知影响一致,再次证实了膜结构-性质关系。目前的发现指向了膜性质的尺度依赖性表现,突出了需要重新评估胆固醇在控制膜弯曲刚度方面的作用,特别是在病毒出芽和脂质-蛋白质相互作用等重要生物学功能的中尺度和时间尺度上。