Suppr超能文献

小细胞肺癌脑转移预测列线图的建立与验证。

Development and validation of a nomogram for the prediction of brain metastases in small cell lung cancer.

机构信息

Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.

Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.

出版信息

Clin Respir J. 2023 May;17(5):456-467. doi: 10.1111/crj.13615. Epub 2023 Apr 18.

Abstract

INTRODUCTION

The aim was to develop and validate a nomogram for the prediction of brain metastases (BM) in small cell lung cancer (SCLC), to explore the risk factors and assist clinical decision-making.

METHODS

We reviewed the clinical data of SCLC patients between 2015 and 2021. Patients between 2015 and 2019 were included to develop, whereas patients between 2020 and 2021 were used for external validation. Clinical indices were analysed by using the least absolute shrinkage and selection operator (LASSO) logistic regression analyses. The final nomogram was constructed and validated by bootstrap resampling.

RESULTS

A total of 631 SCLC patients between 2015 and 2019 were included to construct model. Gender, T stage, N stage, Eastern Cooperative Oncology Group (ECOG), haemoglobin (HGB), the absolute value of lymphocyte (LYMPH #), platelet (PLT), retinol-binding protein (RBP), carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE) were identified as risk factors and included into the model. The C-indices were 0.830 and 0.788 in the internal validation by 1000 bootstrap resamples. The calibration plot revealed excellent agreement between the predicted and the actual probability. Decision curve analysis (DCA) showed better net benefits with a wider range of threshold probability (net clinical benefit was 1%-58%). The model was further externally validated in patients between 2020 and 2021 with a C-index of 0.818.

CONCLUSIONS

We developed and validated a nomogram to predict the risk of BM in SCLC patients, which could help clinicians to rationally schedule follow-ups and promptly implement interventions.

摘要

简介

本研究旨在开发和验证小细胞肺癌(SCLC)脑转移(BM)预测的列线图,以探索风险因素并辅助临床决策。

方法

我们回顾了 2015 年至 2021 年间 SCLC 患者的临床数据。其中 2015 年至 2019 年的数据用于模型构建,2020 年至 2021 年的数据用于外部验证。采用最小绝对收缩和选择算子(LASSO)逻辑回归分析对临床指标进行分析。通过自举重采样构建并验证最终的列线图。

结果

共纳入 2015 年至 2019 年间 631 例 SCLC 患者构建模型。性别、T 分期、N 分期、东部肿瘤协作组(ECOG)体能状态评分、血红蛋白(HGB)、淋巴细胞绝对值(LYMPH #)、血小板(PLT)、视黄醇结合蛋白(RBP)、癌胚抗原(CEA)和神经元特异性烯醇化酶(NSE)被确定为风险因素并纳入模型。通过 1000 次自举重采样的内部验证,C 指数分别为 0.830 和 0.788。校准图显示预测概率与实际概率之间具有良好的一致性。决策曲线分析(DCA)显示,随着阈值概率范围的扩大(净临床获益为 1%-58%),该模型具有更好的净获益。该模型在 2020 年至 2021 年间的外部验证中 C 指数为 0.818。

结论

我们开发并验证了一种列线图来预测 SCLC 患者 BM 的风险,这有助于临床医生合理安排随访并及时实施干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3139/10214575/a195e3573fce/CRJ-17-456-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验