Suppr超能文献

深度学习从部分可观测数据中延迟坐标动力学的混沌吸引子。

Deep learning delay coordinate dynamics for chaotic attractors from partial observable data.

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

Phys Rev E. 2023 Mar;107(3-1):034215. doi: 10.1103/PhysRevE.107.034215.

Abstract

A common problem in time-series analysis is to predict dynamics with only scalar or partial observations of the underlying dynamical system. For data on a smooth compact manifold, Takens' theorem proves a time-delayed embedding of the partial state is diffeomorphic to the attractor, although for chaotic and highly nonlinear systems, learning these delay coordinate mappings is challenging. We utilize deep artificial neural networks (ANNs) to learn discrete time maps and continuous time flows of the partial state. Given training data for the full state, we also learn a reconstruction map. Thus, predictions of a time series can be made from the current state and several previous observations with embedding parameters determined from time-series analysis. The state space for time evolution is of comparable dimension to reduced order manifold models. These are advantages over recurrent neural network models, which require a high-dimensional internal state or additional memory terms and hyperparameters. We demonstrate the capacity of deep ANNs to predict chaotic behavior from a scalar observation on a manifold of dimension three via the Lorenz system. We also consider multivariate observations on the Kuramoto-Sivashinsky equation, where the observation dimension required for accurately reproducing dynamics increases with the manifold dimension via the spatial extent of the system.

摘要

时间序列分析中的一个常见问题是仅使用底层动力系统的标量或部分观测来预测动态。对于光滑紧致流形上的数据,Takens 定理证明了部分状态的时滞嵌入与吸引子是同胚的,尽管对于混沌和高度非线性系统,学习这些延迟坐标映射是具有挑战性的。我们利用深度人工神经网络 (ANN) 来学习部分状态的离散时间映射和连续时间流。对于完整状态的训练数据,我们还学习了一个重建映射。因此,可以根据当前状态和几个以前的观测值以及从时间序列分析确定的嵌入参数来做出时间序列的预测。时间演化的状态空间与降阶流形模型具有可比的维度。这是优于递归神经网络模型的优势,递归神经网络模型需要高维内部状态或额外的内存项和超参数。我们通过 Lorenz 系统证明了深度 ANN 从标量观测在三维流形上预测混沌行为的能力。我们还考虑了 Kuramoto-Sivashinsky 方程的多元观测,其中通过系统的空间范围,准确再现动力学所需的观测维度随着流形维度的增加而增加。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验