Department of Chemistry, Jamia Hamdard, New Delhi, 110062, India.
School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India.
Curr Top Med Chem. 2023;23(16):1477-1488. doi: 10.2174/1568026623666230417083401.
Malaria has created havoc since time immemorial. It has actually become a major health concern due to its high prevalence in developing countries where poor sanitary conditions facilitate the seasonal breeding of the vector, the female Anopheles mosquito. Even after tremendous advancements in pest control and pharmacology science, managing this disease has not been successful, and the cure for this deadly infection has not proven effective lately. The various conventional drugs used are chloroquine, primaquine, mefloquine, atovaquone, quinine, artemisinin etc. All of these have one or other major disadvantages like multi-drug resistance, high dose requirements, aggravated toxicity, non-specificity of conventional drugs, and the emergence of drug-resistant parasites. Therefore, it is necessary to surpass these limitations and look for an alternative to curb the spread of this disease using an emerging technology platform. Nanomedicine is showing promise as an effective alternative tool for the management of malaria. The idea of this tool resonates well with David J. Triggle's outstanding suggestion "The chemist is as the astronaut, searching for biologically useful space in the chemical universe. This review presents a detailed discussion on various nanocarriers, their mode of action and future perspective in treating malaria. Nanotechnology-based drug delivery methods are highly specific, require a lower dose, offer more bioavailability with prolonged drug release and stay in the body longer. Recent nano drug encapsulation and delivery vehicles comprise nanocarriers like liposomes, and organic and inorganic nanoparticles, emerging as promising alternatives for malaria management.
疟疾自古以来就造成了严重破坏。由于发展中国家卫生条件差,有利于病媒蚊子(雌性疟蚊)季节性繁殖,因此它实际上成为了一个主要的健康问题。尽管在害虫控制和药理学科学方面取得了巨大进展,但这种疾病的管理仍未成功,最近也没有证明针对这种致命感染的治疗方法有效。目前使用的各种常规药物包括氯喹、伯氨喹、甲氟喹、阿托伐醌、奎宁、青蒿素等。所有这些药物都存在一个或多个主要缺点,如多药耐药性、高剂量需求、毒性加重、常规药物的非特异性以及耐药寄生虫的出现。因此,有必要超越这些限制,寻找一种替代方法,利用新兴技术平台来遏制这种疾病的传播。纳米医学作为疟疾管理的有效替代工具显示出前景。这个工具的理念与 David J. Triggle 的杰出建议“化学家就像宇航员一样,在化学宇宙中寻找具有生物利用价值的空间”非常契合。这篇综述详细讨论了各种纳米载体、它们的作用模式以及在治疗疟疾方面的未来前景。基于纳米技术的药物输送方法具有高度特异性、需要较低的剂量、提供更高的生物利用度、延长药物释放时间并在体内停留更长时间。最近的纳米药物包封和输送载体包括脂质体和有机和无机纳米颗粒等纳米载体,它们作为疟疾管理的有前途的替代方法而崭露头角。