Suppr超能文献

带有缺失数据的分位数部分线性加性模型及其在认知衰退建模中的应用。

Quantile partially linear additive model for data with dropouts and an application to modeling cognitive decline.

机构信息

School of Statistics, University of Minnesota, Minneapolis, Minnesota.

Miami Herbert Business School, University of Miami, Coral Gables, Florida.

出版信息

Stat Med. 2023 Jul 20;42(16):2729-2745. doi: 10.1002/sim.9745. Epub 2023 Apr 19.

Abstract

The National Alzheimer's Coordinating Center Uniform Data Set includes test results from a battery of cognitive exams. Motivated by the need to model the cognitive ability of low-performing patients we create a composite score from ten tests and propose to model this score using a partially linear quantile regression model for longitudinal studies with non-ignorable dropouts. Quantile regression allows for modeling non-central tendencies. The partially linear model accommodates nonlinear relationships between some of the covariates and cognitive ability. The data set includes patients that leave the study prior to the conclusion. Ignoring such dropouts will result in biased estimates if the probability of dropout depends on the response. To handle this challenge, we propose a weighted quantile regression estimator where the weights are inversely proportional to the estimated probability a subject remains in the study. We prove that this weighted estimator is a consistent and efficient estimator of both linear and nonlinear effects.

摘要

国家阿尔茨海默病协调中心统一数据集包括一系列认知测试的结果。受建模低表现患者认知能力的需要的激励,我们从十个测试中创建了一个综合分数,并提出使用部分线性分位数回归模型对不可忽略的辍学进行纵向研究来对该分数进行建模。分位数回归允许对非中心趋势进行建模。部分线性模型适应了一些协变量与认知能力之间的非线性关系。该数据集包括在研究结束前离开研究的患者。如果辍学的概率取决于反应,那么忽略这些辍学将会导致有偏估计。为了应对这一挑战,我们提出了一种加权分位数回归估计量,其中权重与估计的主体留在研究中的概率成反比。我们证明了该加权估计量是线性和非线性效应的一致和有效估计量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验