United States Department of Agriculture, Agricultural Research Service, Northeast Area, Eastern Regional Research Center, Chemical Residue and Predictive Microbiology Research Unit, University of Maryland Eastern Shore Worksite, Room 2111, Center for Food Science and Technology, Princess Anne, MD 21853, USA.
J Food Prot. 2023 Jun;86(6):100091. doi: 10.1016/j.jfp.2023.100091. Epub 2023 Apr 17.
The Illness Dose (ID) step of a Poultry Food Assess Risk Model (PFARM) for Salmonella and chicken gizzards (CGs) was shown in the present study. The illness dose is the minimum dose of Salmonella consumed that causes an illness. It depends on the zoonotic potential (ZP) of Salmonella, food consumption behavior (FCB), and consumer health and immunity (CHI) or the disease triangle (DT). Zoonotic potential is the ability of Salmonella to survive, grow, and spread in the production chain or food and then cause illness in humans. Illness dose is predicted in PFARM using a DT, dose-response model (DRM) that was developed with human feeding trial (HFT) data and was validated with human outbreak investigation (HOI) data for Salmonella. The ability of the DT, DRM to predict DR data from HOI and HFT for Salmonella was quantified using the Acceptable Prediction Zone (APZ) method where acceptable performance occurred when the proportion of residuals in the APZ (pAPZ) was ≥0.7. United States, Centers for Disease Control and Prevention (CDC) data for human salmonellosis from 2007 to 2016 were used to simulate ZP, and only minor changes in ZP of 11 Salmonella serotypes were observed during this time. The performance of the DT, DRM for predicting Salmonella DR data from HFT and HOI was acceptable with pAPZ that ranged from 0.87 to 1 for individual serotypes of Salmonella. Simulation results from the DT, DRM in PFARM indicated that ID decreased (P ≤ 0.05) and ZP increased (P ≤ 0.05) over time in the simulated production chain because the main serotype of Salmonella changed from Kentucky (low ZP) to Infantis (high ZP) while FCB and CHI were held constant. These results indicated that the DT, DRM in PFARM can be used with confidence to predict ID as a function of ZP, FCB, and CHI. In other words, the DT, DRM in PFARM can be used with confidence to predict dose-response for Salmonella and CGs.
本研究展示了家禽食品评估风险模型(PFARM)中沙门氏菌和鸡肫(CG)的疾病剂量(ID)步骤。疾病剂量是指摄入导致疾病的最低沙门氏菌剂量。它取决于沙门氏菌的动物传染潜力(ZP)、食物消费行为(FCB)和消费者健康与免疫力(CHI)或疾病三角(DT)。动物传染潜力是指沙门氏菌在生产链或食品中存活、生长和传播的能力,然后在人类中引起疾病。PFARM 中使用 DT、剂量反应模型(DRM)预测疾病剂量,该模型是使用人类喂养试验(HFT)数据开发的,并使用沙门氏菌人类爆发调查(HOI)数据进行了验证。使用可接受预测区(APZ)方法量化了 DT、DRM 预测 HOI 和 HFT 中沙门氏菌 DR 数据的能力,其中可接受的性能发生在 APZ 中残差的比例(pAPZ)≥0.7 时。使用 2007 年至 2016 年美国疾病控制与预防中心(CDC)人类沙门氏菌病数据模拟 ZP,在此期间仅观察到 11 种沙门氏菌血清型的 ZP 略有变化。DT、DRM 预测 HFT 和 HOI 中沙门氏菌 DR 数据的性能是可接受的,个别沙门氏菌血清型的 pAPZ 范围为 0.87 至 1。PFARM 中 DT、DRM 的模拟结果表明,由于沙门氏菌的主要血清型从肯塔基州(ZP 低)变为因菲尼斯(ZP 高),而 FCB 和 CHI 保持不变,因此在模拟生产链中 ID 降低(P≤0.05),ZP 增加(P≤0.05)。这些结果表明,DT、DRM 可用于预测 PFARM 中 ZP、FCB 和 CHI 作为 ID 函数的剂量反应,可放心使用。换句话说,PFARM 中的 DT、DRM 可用于预测沙门氏菌和 CG 的剂量反应。