Suppr超能文献

用于单病例预测的计算神经成像策略。

Computational neuroimaging strategies for single patient predictions.

作者信息

Stephan K E, Schlagenhauf F, Huys Q J M, Raman S, Aponte E A, Brodersen K H, Rigoux L, Moran R J, Daunizeau J, Dolan R J, Friston K J, Heinz A

机构信息

Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK; Max Planck Institute for Metabolism Research, 50931 Cologne, Germany.

Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, 04130 Leipzig, Germany.

出版信息

Neuroimage. 2017 Jan 15;145(Pt B):180-199. doi: 10.1016/j.neuroimage.2016.06.038. Epub 2016 Jun 22.

Abstract

Neuroimaging increasingly exploits machine learning techniques in an attempt to achieve clinically relevant single-subject predictions. An alternative to machine learning, which tries to establish predictive links between features of the observed data and clinical variables, is the deployment of computational models for inferring on the (patho)physiological and cognitive mechanisms that generate behavioural and neuroimaging responses. This paper discusses the rationale behind a computational approach to neuroimaging-based single-subject inference, focusing on its potential for characterising disease mechanisms in individual subjects and mapping these characterisations to clinical predictions. Following an overview of two main approaches - Bayesian model selection and generative embedding - which can link computational models to individual predictions, we review how these methods accommodate heterogeneity in psychiatric and neurological spectrum disorders, help avoid erroneous interpretations of neuroimaging data, and establish a link between a mechanistic, model-based approach and the statistical perspectives afforded by machine learning.

摘要

神经影像学越来越多地采用机器学习技术,试图实现具有临床相关性的单受试者预测。机器学习试图在观测数据的特征与临床变量之间建立预测联系,而另一种方法是部署计算模型,以推断产生行为和神经影像反应的(病理)生理和认知机制。本文讨论了基于神经影像的单受试者推断的计算方法背后的基本原理,重点关注其在表征个体受试者疾病机制以及将这些表征映射到临床预测方面的潜力。在概述了两种主要方法——贝叶斯模型选择和生成嵌入(这两种方法可将计算模型与个体预测联系起来)之后,我们回顾了这些方法如何适应精神和神经谱系障碍中的异质性,帮助避免对神经影像数据的错误解读,并在基于模型的机制方法与机器学习提供的统计观点之间建立联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验