Department of Cell Biology (Anatomy III), Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany.
National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
Mol Biol Cell. 2019 Feb 15;30(4):453-466. doi: 10.1091/mbc.E18-02-0132. Epub 2018 Dec 26.
The highly conserved enzyme arginyl-tRNA-protein transferase (Ate1) mediates arginylation, a posttranslational modification that is only incompletely understood at its molecular level. To investigate whether arginylation affects actin-dependent processes in a simple model organism, Dictyostelium discoideum, we knocked out the gene encoding Ate1 and characterized the phenotype of ate1-null cells. Visualization of actin cytoskeleton dynamics by live-cell microscopy indicated significant changes in comparison to wild-type cells. Ate1-null cells were almost completely lacking focal actin adhesion sites at the substrate-attached surface and were only weakly adhesive. In two-dimensional chemotaxis assays toward folate or cAMP, the motility of ate1-null cells was increased. However, in three-dimensional chemotaxis involving more confined conditions, the motility of ate1-null cells was significantly reduced. Live-cell imaging showed that GFP-tagged Ate1 rapidly relocates to sites of newly formed actin-rich protrusions. By mass spectrometric analysis, we identified four arginylation sites in the most abundant actin isoform of Dictyostelium, in addition to arginylation sites in other actin isoforms and several actin-binding proteins. In vitro polymerization assays with actin purified from ate1-null cells revealed a diminished polymerization capacity in comparison to wild-type actin. Our data indicate that arginylation plays a crucial role in the regulation of cytoskeletal activities.
高度保守的酶精氨酰-tRNA 蛋白转移酶(Ate1)介导精氨酰化,这是一种翻译后修饰,其分子水平仅部分了解。为了研究精氨酰化是否会影响简单模式生物 Dictyostelium discoideum 中的肌动蛋白依赖过程,我们敲除了编码 Ate1 的基因,并对 ate1 缺失细胞的表型进行了表征。通过活细胞显微镜观察肌动蛋白细胞骨架动力学,与野生型细胞相比,发现了明显的变化。Ate1 缺失细胞在底物附着表面几乎完全缺乏焦点肌动蛋白粘附位点,并且粘附性较弱。在二维向叶酸或 cAMP 的趋化性测定中,ate1 缺失细胞的迁移率增加。然而,在涉及更受限条件的三维趋化性中,ate1 缺失细胞的迁移率显著降低。活细胞成像显示 GFP 标记的 Ate1 迅速重新定位到新形成的富含肌动蛋白的突起部位。通过质谱分析,除了其他肌动蛋白同工型和几种肌动蛋白结合蛋白中的精氨酰化位点外,我们还在 Dictyostelium 中最丰富的肌动蛋白同工型中鉴定了四个精氨酰化位点。体外聚合试验用 ate1 缺失细胞纯化的肌动蛋白进行,与野生型肌动蛋白相比,聚合能力降低。我们的数据表明,精氨酰化在细胞骨架活性的调节中起着至关重要的作用。