Department of Biology, University of Florida, Gainesville, FL, USA.
Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
Nat Commun. 2023 Apr 19;14(1):2235. doi: 10.1038/s41467-023-37944-5.
Reconstructing the incidence of SARS-CoV-2 infection is central to understanding the state of the pandemic. Seroprevalence studies are often used to assess cumulative infections as they can identify asymptomatic infection. Since July 2020, commercial laboratories have conducted nationwide serosurveys for the U.S. CDC. They employed three assays, with different sensitivities and specificities, potentially introducing biases in seroprevalence estimates. Using models, we show that accounting for assays explains some of the observed state-to-state variation in seroprevalence, and when integrating case and death surveillance data, we show that when using the Abbott assay, estimates of proportions infected can differ substantially from seroprevalence estimates. We also found that states with higher proportions infected (before or after vaccination) had lower vaccination coverages, a pattern corroborated using a separate dataset. Finally, to understand vaccination rates relative to the increase in cases, we estimated the proportions of the population that received a vaccine prior to infection.
重建 SARS-CoV-2 感染的发病率对于了解大流行状况至关重要。血清流行率研究通常用于评估累积感染,因为它们可以识别无症状感染。自 2020 年 7 月以来,美国疾病控制与预防中心的商业实验室一直在进行全国性的血清学调查。他们使用了三种具有不同敏感性和特异性的检测方法,这可能会导致血清流行率估计存在偏差。通过模型,我们表明,考虑检测方法可以解释观察到的各州血清流行率之间的一些差异,并且当整合病例和死亡监测数据时,我们表明,当使用 Abbott 检测方法时,感染比例的估计值与血清流行率估计值有很大差异。我们还发现,感染比例较高(接种疫苗之前或之后)的州的疫苗接种覆盖率较低,这一模式使用另一个数据集得到了证实。最后,为了了解相对于病例增加的疫苗接种率,我们估计了在感染之前接种疫苗的人群比例。