Suppr超能文献

SARS-CoV-2 血清学研究进展:纳入抗体动力学和流行时间最近期因素的累积发病率的无偏估计框架。

SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency.

出版信息

Am J Epidemiol. 2023 Sep 1;192(9):1562-1575. doi: 10.1093/aje/kwad106.

Abstract

Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce estimates of cumulative incidence from raw seroprevalence survey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a postinfection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce estimates of cumulative incidence from 5 large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identified substantial differences between raw seroprevalence and cumulative incidence of over 2-fold in the results of some surveys, and we provide a tool for practitioners to generate cumulative incidence estimates with preset or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics.

摘要

血清学调查是衡量严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)人群暴露的重要资源。越来越多的证据表明,无症状和轻度感染(总共占所有感染的 95%以上)与严重感染相比,抗体滴度较低。抗体水平也在感染后几周达到峰值,并逐渐下降。我们开发了一种统计方法,从原始血清流行率调查结果中生成累积发病率的估计值,这些结果考虑了谱偏差的这些来源。我们结合了感染后纵向队列中多项检测的抗体反应数据,以及流行时间序列,以说明血清学调查相对于个体最近可能感染的时间的时间。我们应用该方法从不同环境和研究设计的 5 项大规模 SARS-CoV-2 血清学调查中生成累积发病率的估计值。我们发现,在一些调查的原始血清流行率和累积发病率之间存在超过 2 倍的显著差异,我们提供了一个工具供从业者使用预设或自定义参数值生成累积发病率估计值。虽然过去一年来,人们已经开展了前所未有的努力来生成 SARS-CoV-2 血清流行率估计值,但要正确解释这些研究的结果,需要充分考虑人群层面的流行病学背景和个体层面的免疫动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8978/10472487/f57c7bad538e/kwad106f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验