Suppr超能文献

估算 2021 年 11 月 14 日前全球、区域和国家的 SARS-CoV-2 日感染和累计感染人数:一项统计分析。

Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis.

出版信息

Lancet. 2022 Jun 25;399(10344):2351-2380. doi: 10.1016/S0140-6736(22)00484-6. Epub 2022 Apr 8.

Abstract

BACKGROUND

Timely, accurate, and comprehensive estimates of SARS-CoV-2 daily infection rates, cumulative infections, the proportion of the population that has been infected at least once, and the effective reproductive number (R) are essential for understanding the determinants of past infection, current transmission patterns, and a population's susceptibility to future infection with the same variant. Although several studies have estimated cumulative SARS-CoV-2 infections in select locations at specific points in time, all of these analyses have relied on biased data inputs that were not adequately corrected for. In this study, we aimed to provide a novel approach to estimating past SARS-CoV-2 daily infections, cumulative infections, and the proportion of the population infected, for 190 countries and territories from the start of the pandemic to Nov 14, 2021. This approach combines data from reported cases, reported deaths, excess deaths attributable to COVID-19, hospitalisations, and seroprevalence surveys to produce more robust estimates that minimise constituent biases.

METHODS

We produced a comprehensive set of global and location-specific estimates of daily and cumulative SARS-CoV-2 infections through Nov 14, 2021, using data largely from Johns Hopkins University (Baltimore, MD, USA) and national databases for reported cases, hospital admissions, and reported deaths, as well as seroprevalence surveys identified through previous reviews, SeroTracker, and governmental organisations. We corrected these data for known biases such as lags in reporting, accounted for under-reporting of deaths by use of a statistical model of the proportion of excess mortality attributable to SARS-CoV-2, and adjusted seroprevalence surveys for waning antibody sensitivity, vaccinations, and reinfection from SARS-CoV-2 escape variants. We then created an empirical database of infection-detection ratios (IDRs), infection-hospitalisation ratios (IHRs), and infection-fatality ratios (IFRs). To estimate a complete time series for each location, we developed statistical models to predict the IDR, IHR, and IFR by location and day, testing a set of predictors justified through published systematic reviews. Next, we combined three series of estimates of daily infections (cases divided by IDR, hospitalisations divided by IHR, and deaths divided by IFR), into a more robust estimate of daily infections. We then used daily infections to estimate cumulative infections and the cumulative proportion of the population with one or more infections, and we then calculated posterior estimates of cumulative IDR, IHR, and IFR using cumulative infections and the corrected data on reported cases, hospitalisations, and deaths. Finally, we converted daily infections into a historical time series of R by location and day based on assumptions of duration from infection to infectiousness and time an individual spent being infectious. For each of these quantities, we estimated a distribution based on an ensemble framework that captured uncertainty in data sources, model design, and parameter assumptions.

FINDINGS

Global daily SARS-CoV-2 infections fluctuated between 3 million and 17 million new infections per day between April, 2020, and October, 2021, peaking in mid-April, 2021, primarily as a result of surges in India. Between the start of the pandemic and Nov 14, 2021, there were an estimated 3·80 billion (95% uncertainty interval 3·44-4·08) total SARS-CoV-2 infections and reinfections combined, and an estimated 3·39 billion (3·08-3·63) individuals, or 43·9% (39·9-46·9) of the global population, had been infected one or more times. 1·34 billion (1·20-1·49) of these infections occurred in south Asia, the highest among the seven super-regions, although the sub-Saharan Africa super-region had the highest infection rate (79·3 per 100 population [69·0-86·4]). The high-income super-region had the fewest infections (239 million [226-252]), and southeast Asia, east Asia, and Oceania had the lowest infection rate (13·0 per 100 population [8·4-17·7]). The cumulative proportion of the population ever infected varied greatly between countries and territories, with rates higher than 70% in 40 countries and lower than 20% in 39 countries. There was no discernible relationship between R and total immunity, and even at total immunity levels of 80%, we observed no indication of an abrupt drop in R, indicating that there is not a clear herd immunity threshold observed in the data.

INTERPRETATION

COVID-19 has already had a staggering impact on the world up to the beginning of the omicron (B.1.1.529) wave, with over 40% of the global population infected at least once by Nov 14, 2021. The vast differences in cumulative proportion of the population infected across locations could help policy makers identify the transmission-prevention strategies that have been most effective, as well as the populations at greatest risk for future infection. This information might also be useful for targeted transmission-prevention interventions, including vaccine prioritisation. Our statistical approach to estimating SARS-CoV-2 infection allows estimates to be updated and disseminated rapidly on the basis of newly available data, which has and will be crucially important for timely COVID-19 research, science, and policy responses.

FUNDING

Bill & Melinda Gates Foundation, J Stanton, T Gillespie, and J and E Nordstrom.

摘要

背景

及时、准确、全面地估计 SARS-CoV-2 每日感染率、累计感染人数、至少感染过一次的人口比例以及有效繁殖数(R)对于了解过去感染的决定因素、当前传播模式以及同一变异体对未来感染的人群易感性至关重要。尽管有几项研究在特定时间点估计了选定地点的累计 SARS-CoV-2 感染人数,但所有这些分析都依赖于未经充分校正的有偏数据输入。在这项研究中,我们旨在提供一种新方法来估计 190 个国家和地区从大流行开始到 2021 年 11 月 14 日的过去 SARS-CoV-2 每日感染人数、累计感染人数和感染人口比例。该方法结合了报告病例、报告死亡、归因于 COVID-19 的超额死亡、住院和血清流行率调查的数据,以产生更稳健的估计,最大程度地减少组成部分的偏差。

方法

我们使用主要来自约翰霍普金斯大学(美国巴尔的摩)和国家数据库的报告病例、住院和报告死亡以及以前的综述、SeroTracker 和政府组织确定的血清流行率调查数据,制作了全球和特定地点的 SARS-CoV-2 每日和累计感染人数的综合估计值,截至 2021 年 11 月 14 日。我们对这些数据进行了校正,以消除已知的偏差,例如报告的滞后,使用归因于 SARS-CoV-2 的超额死亡率的统计模型来解释死亡的漏报,并调整血清流行率调查以适应抗体敏感性下降、接种疫苗和来自 SARS-CoV-2 逃逸变体的再感染。然后,我们创建了一个感染检测比(IDR)、感染住院比(IHR)和感染病死率(IFR)的经验数据库。为了为每个地点建立完整的时间序列,我们开发了统计模型来预测 IDR、IHR 和 IFR 随地点和日期的变化,测试了通过已发表的系统综述证明合理的一组预测因子。接下来,我们将三种每日感染人数的估计系列(病例除以 IDR、住院除以 IHR 和死亡除以 IFR)合并为更稳健的每日感染人数估计值。然后,我们使用每日感染人数来估计累计感染人数和至少感染过一次的人口比例,并使用报告病例、住院和死亡的校正数据计算累积 IDR、IHR 和 IFR 的后验估计值。最后,我们根据从感染到传染性和个体传染性持续时间的假设,将每日感染人数转换为按地点和日期计算的历史 R 时间序列。对于这些数量中的每一个,我们基于一个集合框架进行了分布估计,该框架捕获了数据源、模型设计和参数假设中的不确定性。

发现

全球每日 SARS-CoV-2 感染人数在 2020 年 4 月至 2021 年 10 月期间在每天 300 万至 1700 万例之间波动,2021 年 4 月中旬达到峰值,主要是由于印度的疫情激增。截至 2021 年 11 月 14 日,全球范围内估计有 38 亿(95%置信区间 34.4-40.6)例 SARS-CoV-2 感染和再感染,估计有 33.9 亿(30.8-36.3)人,即全球人口的 43.9%(39.9-46.9)至少感染过一次。在七个超级区域中,南亚的感染和再感染总数(13.4 亿[12.0-14.9])最高,尽管撒哈拉以南非洲超级区域的感染率最高(每 100 人口 79.3[69.0-86.4])。高收入超级区域的感染人数最少(2.39 亿[2.26-2.52]),东南亚、东亚和大洋洲的感染率最低(每 100 人口 13.0[8.4-17.7])。各国和地区的累计感染人口比例差异很大,40 个国家的感染率高于 70%,39 个国家的感染率低于 20%。R 与总免疫力之间没有明显的关系,即使在总免疫力水平为 80%的情况下,我们也没有发现 R 急剧下降的迹象,这表明数据中没有明确的群体免疫阈值。

解释

截至 2021 年 11 月 14 日,COVID-19 已经对全球造成了惊人的影响,全球超过 40%的人口至少感染过一次。各地累计感染人口比例的巨大差异可以帮助政策制定者确定最有效的传播预防策略,以及未来感染风险最大的人群。这些信息对于有针对性的传播预防干预措施,包括疫苗优先接种,也可能是有用的。我们对 SARS-CoV-2 感染的统计方法允许根据新的可用数据快速更新和传播估计,这对于及时的 COVID-19 研究、科学和政策反应至关重要。

资金

比尔及梅琳达·盖茨基金会、J 斯坦顿、T 吉莱斯皮和 J 和 E 诺德斯特姆。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1915/9227746/3126d922b57a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验