Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic.
Centre for Phycology, Institute of Botany of the Czech Academy of Sciences, Trebon, Czech Republic.
Microb Cell Fact. 2023 Apr 19;22(1):73. doi: 10.1186/s12934-023-02061-x.
Algae are prominent producers of carotenoids and polyunsaturated fatty acids which are greatly prized in the food and pharmaceutic industry. Fucoxanthin represents a notable high-value carotenoid produced exclusively by algae. Its benefits range far beyond just antioxidant activity and include cancer prevention, anti-diabetes, anti-obesity, and many other positive effects. Accordingly, large-scale microalgae cultivation to produce fucoxanthin and polyunsaturated fatty acids is still under intensive development in the commercial and academic sectors. Industrially exploitable strains are predominantly derived from marine species while comparable freshwater fucoxanthin producers have yet to be explored.
In this study, we searched for freshwater fucoxanthin producers among photoautotrophic flagellates including members of the class Chrysophyceae. The initial screening turned our attention to the chrysophyte alga Hibberdia magna. We performed a comprehensive cultivation experiments using a temperature × light cross-gradient to assess the impact of these conditions on the target compounds productivity. Here we present the observations that H. magna simultaneously produces fucoxanthin (max. 1.2% dry biomass) and polyunsaturated fatty acids (max. ~ 9.9% dry biomass) and is accessible to routine cultivation in lab-scale conditions. The highest biomass yields were 3.73 g L accompanied by maximal volumetric productivity of 0.54 g L d which are comparable values to marine microalgae fucoxanthin producers in phototrophic mode. H. magna demonstrated different optimal conditions for biomass, fucoxanthin, and fatty acid accumulation. While maximal fucoxanthin productivities were obtained in dim light and moderate temperatures (23 °C× 80 µmol m s), the highest PUFA and overall biomass productivities were found in low temperature and high light (17-20 °C × 320-480 µmol m s). Thus, a smart biotechnology setup should be designed to fully utilize H. magna biotechnological potential.
Our research brings pioneer insight into the biotechnology potential of freshwater autotrophic flagellates and highlights their ability to produce high-value compounds. Freshwater fucoxanthin-producing species are of special importance as the use of sea-water-based media may increase cultivation costs and prohibits inland microalgae production.
藻类是类胡萝卜素和多不饱和脂肪酸的主要生产者,这些物质在食品和制药行业中非常受欢迎。岩藻黄质是一种具有高价值的类胡萝卜素,仅由藻类产生。它的益处不仅限于抗氧化活性,还包括预防癌症、抗糖尿病、抗肥胖等许多积极影响。因此,大规模微藻培养以生产岩藻黄质和多不饱和脂肪酸在商业和学术领域仍在深入开发。可工业利用的菌株主要来自海洋物种,而可比的淡水岩藻黄质生产者尚未被开发。
在这项研究中,我们在包括金藻纲在内的自养鞭毛藻中寻找淡水岩藻黄质生产者。初步筛选使我们注意到金藻门藻类 Hibberdia magna。我们使用温度×光照交叉梯度进行了全面的培养实验,以评估这些条件对目标化合物产量的影响。在这里,我们提出了以下观察结果:Hibberdia magna 同时产生岩藻黄质(最高达干生物质的 1.2%)和多不饱和脂肪酸(最高达干生物质的~9.9%),并且可以在实验室规模的常规培养条件下进行培养。最高生物量产量为 3.73 g/L,最大体积生产力为 0.54 g/L/d,与光养模式下的海洋微藻岩藻黄质生产者相当。Hibberdia magna 表现出不同的最佳生物量、岩藻黄质和脂肪酸积累条件。虽然在弱光和中等温度(23°C×80 μmol m s)下获得了最高的岩藻黄质生产力,但在低温和高光(17-20°C×320-480 μmol m s)下发现了最高的多不饱和脂肪酸和总生物量生产力。因此,应该设计一个智能生物技术装置来充分利用 Hibberdia magna 的生物技术潜力。
我们的研究为淡水自养鞭毛藻的生物技术潜力带来了开创性的见解,并强调了它们生产高价值化合物的能力。淡水产岩藻黄质的物种尤为重要,因为使用海水基培养基可能会增加培养成本并禁止内陆微藻生产。